Normalized defining polynomial
\( x^{16} - 4 x^{15} - 38 x^{14} + 142 x^{13} + 512 x^{12} - 1790 x^{11} - 3022 x^{10} + 10314 x^{9} + 8440 x^{8} - 29394 x^{7} - 11572 x^{6} + 41790 x^{5} + 8077 x^{4} - 27422 x^{3} - 3558 x^{2} + 6564 x + 956 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9321955795676176000000000000=2^{16}\cdot 5^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(340=2^{2}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{340}(1,·)$, $\chi_{340}(67,·)$, $\chi_{340}(69,·)$, $\chi_{340}(327,·)$, $\chi_{340}(203,·)$, $\chi_{340}(81,·)$, $\chi_{340}(149,·)$, $\chi_{340}(89,·)$, $\chi_{340}(101,·)$, $\chi_{340}(103,·)$, $\chi_{340}(169,·)$, $\chi_{340}(47,·)$, $\chi_{340}(307,·)$, $\chi_{340}(183,·)$, $\chi_{340}(123,·)$, $\chi_{340}(21,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{28} a^{12} + \frac{1}{7} a^{11} - \frac{1}{4} a^{10} - \frac{1}{14} a^{9} - \frac{1}{7} a^{8} - \frac{3}{7} a^{7} - \frac{13}{28} a^{6} - \frac{3}{14} a^{5} + \frac{3}{28} a^{4} - \frac{3}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{28} a^{13} + \frac{5}{28} a^{11} - \frac{1}{14} a^{10} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{4} a^{7} - \frac{5}{14} a^{6} - \frac{1}{28} a^{5} + \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{13245036} a^{14} + \frac{50524}{3311259} a^{13} + \frac{41725}{13245036} a^{12} + \frac{172235}{946074} a^{11} - \frac{360019}{3311259} a^{10} + \frac{67403}{315358} a^{9} + \frac{1251841}{13245036} a^{8} - \frac{2519837}{6622518} a^{7} - \frac{1495631}{4415012} a^{6} - \frac{1445119}{3311259} a^{5} - \frac{205977}{1103753} a^{4} - \frac{2620085}{6622518} a^{3} + \frac{1761841}{6622518} a^{2} - \frac{218246}{473037} a + \frac{123976}{3311259}$, $\frac{1}{14058267965364} a^{15} - \frac{87407}{3514566991341} a^{14} + \frac{118203330935}{7029133982682} a^{13} - \frac{35659240361}{14058267965364} a^{12} - \frac{275233087939}{2008323995052} a^{11} + \frac{728971365545}{4686089321788} a^{10} - \frac{388534866815}{2008323995052} a^{9} - \frac{1460624785271}{7029133982682} a^{8} - \frac{169887417481}{2343044660894} a^{7} + \frac{3361981231205}{14058267965364} a^{6} - \frac{274864313611}{4686089321788} a^{5} + \frac{6156651803699}{14058267965364} a^{4} + \frac{1470101967571}{7029133982682} a^{3} - \frac{1500197024036}{3514566991341} a^{2} + \frac{1565512205458}{3514566991341} a + \frac{1271908286}{4901767073}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1218421193.9371946 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||