Normalized defining polynomial
\( x^{16} - 2112 x^{14} + 935394 x^{12} - 183033936 x^{10} + 18653278488 x^{8} - 1011501032544 x^{6} + 26847111004146 x^{4} - 270532959113664 x^{2} + 828136391014881 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(905753649159746996911383825582234865238016=2^{56}\cdot 3^{14}\cdot 13^{6}\cdot 859^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $419.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 859$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{2577} a^{10} - \frac{394}{2577} a^{8} - \frac{19}{859} a^{6} + \frac{22}{859} a^{4} - \frac{334}{859} a^{2}$, $\frac{1}{2577} a^{11} - \frac{394}{2577} a^{9} - \frac{19}{859} a^{7} + \frac{22}{859} a^{5} - \frac{334}{859} a^{3}$, $\frac{1}{2213643} a^{12} - \frac{394}{2213643} a^{10} + \frac{258502}{2213643} a^{8} + \frac{200169}{737881} a^{6} - \frac{325895}{737881} a^{4} - \frac{280}{859} a^{2}$, $\frac{1}{2213643} a^{13} - \frac{394}{2213643} a^{11} + \frac{258502}{2213643} a^{9} + \frac{200169}{737881} a^{7} - \frac{325895}{737881} a^{5} - \frac{280}{859} a^{3}$, $\frac{1}{100691363020951430078353537303184424675381} a^{14} + \frac{4228315747790064720816220729028102}{33563787673650476692784512434394808225127} a^{12} + \frac{640549959087907295580583732797016034}{33563787673650476692784512434394808225127} a^{10} - \frac{645917661183381172181401124125031309833}{11187929224550158897594837478131602741709} a^{8} - \frac{200983447114172989464196559722806622}{234711801913639697152339247792970686889} a^{6} - \frac{1160692313180680138980208487003870012}{13024364638591570311519019182923868151} a^{4} - \frac{3648857522896273987810966378491283}{15162240557149674402234015346826389} a^{2} + \frac{195326820516205074581855432691}{1357772056698278356070029134667}$, $\frac{1}{100691363020951430078353537303184424675381} a^{15} + \frac{4228315747790064720816220729028102}{33563787673650476692784512434394808225127} a^{13} + \frac{640549959087907295580583732797016034}{33563787673650476692784512434394808225127} a^{11} - \frac{645917661183381172181401124125031309833}{11187929224550158897594837478131602741709} a^{9} - \frac{200983447114172989464196559722806622}{234711801913639697152339247792970686889} a^{7} - \frac{1160692313180680138980208487003870012}{13024364638591570311519019182923868151} a^{5} - \frac{3648857522896273987810966378491283}{15162240557149674402234015346826389} a^{3} + \frac{195326820516205074581855432691}{1357772056698278356070029134667} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3225548234380000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T493):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.179712.2, 4.4.7488.1, 4.4.13824.1, 8.8.129185611776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 859 | Data not computed | ||||||