Normalized defining polynomial
\( x^{16} - 3264 x^{14} + 4140208 x^{12} - 2581228928 x^{10} + 836309669640 x^{8} - 142366611859328 x^{6} + 12437574187407824 x^{4} - 512785191909377632 x^{2} + 7658348535725451218 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9051792270538665113859285354790637594769776181248=2^{79}\cdot 23^{4}\cdot 31^{8}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1147.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 31, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{23} a^{8} + \frac{7}{23} a^{6} - \frac{10}{23} a^{4} + \frac{3}{23} a^{2}$, $\frac{1}{23} a^{9} + \frac{7}{23} a^{7} - \frac{10}{23} a^{5} + \frac{3}{23} a^{3}$, $\frac{1}{14329} a^{10} + \frac{118}{14329} a^{8} - \frac{1763}{14329} a^{6} - \frac{1889}{14329} a^{4} + \frac{294}{2047} a^{2} + \frac{3}{7}$, $\frac{1}{14329} a^{11} + \frac{118}{14329} a^{9} - \frac{1763}{14329} a^{7} - \frac{1889}{14329} a^{5} + \frac{294}{2047} a^{3} + \frac{3}{7} a$, $\frac{1}{29331463} a^{12} + \frac{830}{29331463} a^{10} - \frac{477824}{29331463} a^{8} + \frac{11486943}{29331463} a^{6} - \frac{198459}{29331463} a^{4} - \frac{1138}{14329} a^{2} - \frac{2}{7}$, $\frac{1}{29331463} a^{13} + \frac{830}{29331463} a^{11} - \frac{477824}{29331463} a^{9} + \frac{11486943}{29331463} a^{7} - \frac{198459}{29331463} a^{5} - \frac{1138}{14329} a^{3} - \frac{2}{7} a$, $\frac{1}{321134418718370500328089684489029692223748098557} a^{14} - \frac{1345857129732627190915512536510852866078}{321134418718370500328089684489029692223748098557} a^{12} + \frac{6659247003231134122323778266213265135769272}{321134418718370500328089684489029692223748098557} a^{10} - \frac{462481278773292032786584425260132288144130054}{24702647593720807717545360345309976324903699889} a^{8} + \frac{1269408161337443863988872443501107649161477606}{45876345531195785761155669212718527460535442651} a^{6} + \frac{49335380601891967267248677857709104996867940}{156880517204870786677132234728397504750243331} a^{4} + \frac{37056851477592758022962693405454419075331}{76639236543659397497377740463310945163773} a^{2} + \frac{4781866783698770058208750121164700714}{37439783362803809231742911804255469059}$, $\frac{1}{149969773541479023653217882656376866268490362026119} a^{15} + \frac{228571852501245565301217708853421982625241}{149969773541479023653217882656376866268490362026119} a^{13} - \frac{4217575038197277676879927111050757972234712559}{149969773541479023653217882656376866268490362026119} a^{11} + \frac{183001601561596356841127560451582770497635650436}{11536136426267617204093683281259758943730027848163} a^{9} - \frac{5907530971051382971624451643866886085224076209687}{21424253363068431950459697522339552324070051718017} a^{7} + \frac{16508531382663916953827928301292769399621922127}{73263201534674657378220753618161634718363635577} a^{5} + \frac{12392222800986212608307355331721563464014390}{35790523465888938631275404796366211391481991} a^{3} - \frac{497980938373952382482338922678837312364}{17484378830429378911223939812587304050553} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13778676273300000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^2\wr C_2$ (as 16T385):
| A solvable group of order 128 |
| The 20 conjugacy class representatives for $C_4.C_2^2\wr C_2$ |
| Character table for $C_4.C_2^2\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{62}) \), 4.4.1968128.1, 8.8.1983246246084608.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $31$ | 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |