Normalized defining polynomial
\( x^{16} - 4 x^{15} - 30 x^{14} + 140 x^{13} + 209 x^{12} - 1444 x^{11} + 232 x^{10} + 4725 x^{9} - 2799 x^{8} - 5034 x^{7} + 2187 x^{6} + 2572 x^{5} - 136 x^{4} - 443 x^{3} - 79 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87569778018689765869140625=5^{12}\cdot 101^{2}\cdot 181^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{41} a^{13} + \frac{14}{41} a^{12} - \frac{6}{41} a^{11} - \frac{13}{41} a^{10} + \frac{14}{41} a^{9} - \frac{13}{41} a^{8} + \frac{11}{41} a^{7} - \frac{2}{41} a^{6} - \frac{6}{41} a^{5} + \frac{1}{41} a^{4} - \frac{15}{41} a^{3} + \frac{2}{41} a^{2} - \frac{11}{41} a - \frac{4}{41}$, $\frac{1}{41} a^{14} + \frac{3}{41} a^{12} - \frac{11}{41} a^{11} - \frac{9}{41} a^{10} - \frac{4}{41} a^{9} - \frac{12}{41} a^{8} + \frac{8}{41} a^{7} - \frac{19}{41} a^{6} + \frac{3}{41} a^{5} + \frac{12}{41} a^{4} + \frac{7}{41} a^{3} + \frac{2}{41} a^{2} - \frac{14}{41} a + \frac{15}{41}$, $\frac{1}{217635654280529} a^{15} + \frac{584830345909}{217635654280529} a^{14} - \frac{1828749644338}{217635654280529} a^{13} + \frac{25351800457930}{217635654280529} a^{12} + \frac{80595221053698}{217635654280529} a^{11} + \frac{100773241473095}{217635654280529} a^{10} + \frac{50959785460968}{217635654280529} a^{9} + \frac{22819534764144}{217635654280529} a^{8} - \frac{96412590712465}{217635654280529} a^{7} - \frac{3667608963973}{217635654280529} a^{6} + \frac{62209650797187}{217635654280529} a^{5} - \frac{22129277792323}{217635654280529} a^{4} - \frac{67978485908976}{217635654280529} a^{3} + \frac{98139543692873}{217635654280529} a^{2} + \frac{25944719503607}{217635654280529} a + \frac{25081239055332}{217635654280529}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53785926.2144 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T707):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.4525.1, 8.8.2068038125.1, 8.8.92652203125.1, 8.8.9357872515625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |