Normalized defining polynomial
\( x^{16} - 5 x^{15} - 36 x^{14} + 145 x^{13} + 560 x^{12} - 1610 x^{11} - 4769 x^{10} + 8490 x^{9} + 23394 x^{8} - 20855 x^{7} - 64854 x^{6} + 15240 x^{5} + 92315 x^{4} + 21110 x^{3} - 50036 x^{2} - 29130 x - 3299 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86380562306022715087890625=5^{12}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{218} a^{13} - \frac{11}{109} a^{12} - \frac{49}{109} a^{11} - \frac{79}{218} a^{10} - \frac{4}{109} a^{9} - \frac{14}{109} a^{8} + \frac{47}{218} a^{7} + \frac{15}{109} a^{6} - \frac{30}{109} a^{5} - \frac{101}{218} a^{4} - \frac{23}{109} a^{3} - \frac{35}{109} a^{2} - \frac{95}{218} a - \frac{49}{109}$, $\frac{1}{218} a^{14} - \frac{37}{218} a^{12} - \frac{55}{218} a^{11} - \frac{1}{109} a^{10} - \frac{95}{218} a^{9} + \frac{85}{218} a^{8} - \frac{13}{109} a^{7} + \frac{55}{218} a^{6} + \frac{105}{218} a^{5} - \frac{44}{109} a^{4} - \frac{101}{218} a^{3} - \frac{1}{2} a^{2} - \frac{4}{109} a - \frac{85}{218}$, $\frac{1}{266522136997222} a^{15} - \frac{138591187411}{133261068498611} a^{14} + \frac{297450992080}{133261068498611} a^{13} + \frac{19028930083587}{133261068498611} a^{12} - \frac{24772543848748}{133261068498611} a^{11} + \frac{27431248056120}{133261068498611} a^{10} + \frac{56559694816649}{133261068498611} a^{9} - \frac{57864404794155}{133261068498611} a^{8} - \frac{4464448587079}{133261068498611} a^{7} + \frac{63240190886888}{133261068498611} a^{6} + \frac{41465970458812}{133261068498611} a^{5} - \frac{16866797908345}{133261068498611} a^{4} - \frac{21015308584234}{133261068498611} a^{3} - \frac{58176870688526}{133261068498611} a^{2} + \frac{47149879163234}{133261068498611} a - \frac{47524729127117}{266522136997222}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57322151.8284 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |