Normalized defining polynomial
\( x^{16} - 44 x^{14} - 24 x^{13} + 670 x^{12} + 552 x^{11} - 4484 x^{10} - 4272 x^{9} + 13957 x^{8} + 14208 x^{7} - 19736 x^{6} - 20784 x^{5} + 11692 x^{4} + 13344 x^{3} - 1664 x^{2} - 3024 x - 383 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(862341265079199274522116096=2^{48}\cdot 3^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{44643} a^{14} - \frac{472}{14881} a^{13} + \frac{5984}{44643} a^{12} - \frac{536}{14881} a^{11} - \frac{537}{14881} a^{10} - \frac{2851}{44643} a^{9} + \frac{6917}{44643} a^{8} + \frac{21997}{44643} a^{7} - \frac{3029}{44643} a^{6} - \frac{6728}{14881} a^{5} - \frac{1346}{14881} a^{4} - \frac{9290}{44643} a^{3} + \frac{7357}{14881} a^{2} - \frac{1018}{44643} a - \frac{2550}{14881}$, $\frac{1}{19444043188640883} a^{15} + \frac{164176274981}{19444043188640883} a^{14} + \frac{8206333582618}{845393182114821} a^{13} - \frac{1165820566960172}{19444043188640883} a^{12} + \frac{872808120094585}{6481347729546961} a^{11} - \frac{132743374105792}{6481347729546961} a^{10} + \frac{350902614377081}{6481347729546961} a^{9} + \frac{313563936543974}{19444043188640883} a^{8} + \frac{2677957984189792}{6481347729546961} a^{7} - \frac{3488395589088308}{19444043188640883} a^{6} + \frac{1373174506896534}{6481347729546961} a^{5} - \frac{1812437500756472}{6481347729546961} a^{4} - \frac{1193740332403315}{19444043188640883} a^{3} - \frac{2338899476540452}{19444043188640883} a^{2} - \frac{9027807360059120}{19444043188640883} a + \frac{1910220520545250}{19444043188640883}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 155691205.876 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times Q_8$ (as 16T7):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_8$ |
| Character table for $D_8$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |