Normalized defining polynomial
\( x^{16} - x^{15} - 919 x^{14} + 330 x^{13} + 333504 x^{12} + 207407 x^{11} - 62605754 x^{10} - 104127446 x^{9} + 6520100240 x^{8} + 17009155785 x^{7} - 369548628666 x^{6} - 1243559750672 x^{5} + 10246556574051 x^{4} + 39953039198538 x^{3} - 102338147908928 x^{2} - 451442241263186 x - 151797202614301 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(84693947642368239934810426203628826170679406001=13^{14}\cdot 173^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $857.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13} a^{11} + \frac{4}{13} a^{10} + \frac{1}{13} a^{9} + \frac{6}{13} a^{8} + \frac{5}{13} a^{7} + \frac{6}{13} a^{5} + \frac{5}{13} a^{4} + \frac{2}{13} a^{3} - \frac{3}{13} a^{2} + \frac{2}{13} a - \frac{3}{13}$, $\frac{1}{13} a^{12} - \frac{2}{13} a^{10} + \frac{2}{13} a^{9} - \frac{6}{13} a^{8} + \frac{6}{13} a^{7} + \frac{6}{13} a^{6} - \frac{6}{13} a^{5} - \frac{5}{13} a^{4} + \frac{2}{13} a^{3} + \frac{1}{13} a^{2} + \frac{2}{13} a - \frac{1}{13}$, $\frac{1}{13} a^{13} - \frac{3}{13} a^{10} - \frac{4}{13} a^{9} + \frac{5}{13} a^{8} + \frac{3}{13} a^{7} - \frac{6}{13} a^{6} - \frac{6}{13} a^{5} - \frac{1}{13} a^{4} + \frac{5}{13} a^{3} - \frac{4}{13} a^{2} + \frac{3}{13} a - \frac{6}{13}$, $\frac{1}{43433} a^{14} - \frac{1598}{43433} a^{13} - \frac{853}{43433} a^{12} - \frac{1650}{43433} a^{11} - \frac{11961}{43433} a^{10} - \frac{19953}{43433} a^{9} - \frac{2806}{43433} a^{8} - \frac{6765}{43433} a^{7} - \frac{14308}{43433} a^{6} - \frac{1523}{3341} a^{5} + \frac{2508}{43433} a^{4} + \frac{1254}{43433} a^{3} - \frac{6248}{43433} a^{2} + \frac{20828}{43433} a + \frac{11664}{43433}$, $\frac{1}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{15} + \frac{317828308092814374273648229414982687708204014548581246718681088289857150011736}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{14} + \frac{1153884923589773315445803196521479493609843973235587017419160891409959830976010289}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{13} - \frac{364807994368763388794039862078591282481792715844673739245173018062750239034618959}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{12} - \frac{446467508300257026579067961278322475611449414811261496646509800214782525603494994}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{11} - \frac{11321258162325868736122368722659885175401923301229093533097215290986284228025873473}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{10} + \frac{38308412428421823132864948558795727378860048315376685809512541155100820220993599}{719463847582658798505191241518999072227991773738990483593585367045445905684009711} a^{9} - \frac{254922775091543165866689704791239186893397809959475065836461846298118131966253039}{2379765034311871410440247952716689238907972790059737753424936214073397995724032121} a^{8} - \frac{7171038166566618040097735081982831311247533098951148862029649519935078307383060625}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{7} + \frac{12199211818829251038704026504434440080466926255712701983491759997144744818805248970}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{6} + \frac{6361137641451567287969098767031462464558275622951539090865629320231243034218328870}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{5} + \frac{3180209883806310630433791370408886251714411469045933897549783341502921091869007664}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{4} - \frac{15347098675565893350864218433187197033306031900762907756308220488238663403489407888}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{3} - \frac{10857542594920385898054203339301877073771374401500870390935552236115908998903376805}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a^{2} + \frac{2306534357640814564134467259859297262889046890379654757627460890564402251047757673}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573} a - \frac{2837318861523392343669916056302733185508210838204042906621190210733654836522177110}{30936945446054328335723223385316960105803646270776590794524170782954173944412417573}$
Class group and class number
$C_{5}\times C_{10}$, which has order $50$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30374024111100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{2249}) \), \(\Q(\sqrt{173}) \), \(\Q(\sqrt{13}, \sqrt{173})\), 8.8.129400731862107174001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $173$ | 173.8.7.2 | $x^{8} - 692$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 173.8.7.2 | $x^{8} - 692$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |