Normalized defining polynomial
\( x^{16} - 6 x^{15} - 156 x^{14} + 464 x^{13} + 9846 x^{12} + 602 x^{11} - 274489 x^{10} - 670628 x^{9} + 2257212 x^{8} + 12490108 x^{7} + 16208101 x^{6} - 10828192 x^{5} - 42119744 x^{4} - 23145964 x^{3} + 12749774 x^{2} + 9245136 x - 1985409 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8422523572126121633218804931640625=5^{14}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{5}{12} a^{6} - \frac{1}{3} a^{5} + \frac{5}{12} a^{4} + \frac{5}{12} a^{3} + \frac{1}{12} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{12} a^{11} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{3} a^{3} - \frac{1}{4}$, $\frac{1}{12} a^{12} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{5}{12} a^{2} - \frac{1}{3} a$, $\frac{1}{4176} a^{14} - \frac{71}{2088} a^{13} + \frac{41}{4176} a^{12} + \frac{19}{2088} a^{11} + \frac{15}{464} a^{10} + \frac{61}{1044} a^{9} + \frac{101}{2088} a^{8} - \frac{11}{261} a^{7} - \frac{67}{232} a^{6} - \frac{367}{1044} a^{5} + \frac{719}{4176} a^{4} + \frac{133}{522} a^{3} + \frac{379}{4176} a^{2} + \frac{9}{116} a - \frac{159}{464}$, $\frac{1}{1419586515577513378707786149887008} a^{15} - \frac{104605743027876237741986765915}{1419586515577513378707786149887008} a^{14} + \frac{6095344387535693205374781431519}{157731835064168153189754016654112} a^{13} + \frac{8901015749800177717456781433223}{473195505192504459569262049962336} a^{12} + \frac{6372516284778968202995670374521}{1419586515577513378707786149887008} a^{11} + \frac{49528171728611221919296864951621}{1419586515577513378707786149887008} a^{10} + \frac{727002887844249747543273637}{13548517012898827795031267536} a^{9} + \frac{15519677415824686485969211035203}{236597752596252229784631024981168} a^{8} - \frac{118679495840459648610684880748171}{709793257788756689353893074943504} a^{7} + \frac{210026859503748391940952269940565}{709793257788756689353893074943504} a^{6} - \frac{221594826549298446515243226601879}{473195505192504459569262049962336} a^{5} - \frac{69543301951048995620223214874607}{157731835064168153189754016654112} a^{4} - \frac{43540329594429264969222176194441}{1419586515577513378707786149887008} a^{3} - \frac{121417803751670865450331330498927}{1419586515577513378707786149887008} a^{2} + \frac{38008901149544766115224628526111}{473195505192504459569262049962336} a + \frac{150603399845995052454367327}{715009610401440397775866912}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2292411816440 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{265}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{5}, \sqrt{53})\), 4.4.18609625.1, 4.4.18609625.2, 8.8.346318142640625.1, 8.8.91774307799765625.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 53 | Data not computed | ||||||