Normalized defining polynomial
\( x^{16} - 7 x^{15} - 375 x^{14} + 2556 x^{13} + 44134 x^{12} - 293372 x^{11} - 2209198 x^{10} + 14315850 x^{9} + 48143023 x^{8} - 304732459 x^{7} - 394643403 x^{6} + 2523625128 x^{5} + 638786405 x^{4} - 7025084645 x^{3} + 1602954741 x^{2} + 4517590230 x - 1591133436 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8403621967231401423280940753903439872=2^{12}\cdot 163^{10}\cdot 173^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 163, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a$, $\frac{1}{231315575652405890557110051129312456198686535182028833308441537806537104958} a^{15} - \frac{15982733262836940775700085834367169467531442698350277888306271833717835521}{231315575652405890557110051129312456198686535182028833308441537806537104958} a^{14} - \frac{6896738883089228526315509902750643537440886037204875768784463936707079880}{38552595942067648426185008521552076033114422530338138884740256301089517493} a^{13} - \frac{5714233225978833157384685352857249147923724709048875496401905067031997443}{25701730628045098950790005681034717355409615020225425923160170867393011662} a^{12} + \frac{16686433636668491721916300043017558353863266460145715837671381281754054199}{231315575652405890557110051129312456198686535182028833308441537806537104958} a^{11} + \frac{28532739691217115613941032885060539075417737727293720488197270309812543115}{231315575652405890557110051129312456198686535182028833308441537806537104958} a^{10} + \frac{33468988056329474581831227210924448916621184790346963862187051363531624829}{231315575652405890557110051129312456198686535182028833308441537806537104958} a^{9} - \frac{37741808620066358566508996582434523034609582041105024600681609038501475657}{77105191884135296852370017043104152066228845060676277769480512602179034986} a^{8} + \frac{2700645531952109080474860221020830835474889876617173754779611474356386518}{115657787826202945278555025564656228099343267591014416654220768903268552479} a^{7} - \frac{6828692024284918062429090534496529967893332706737207182827157769954866763}{231315575652405890557110051129312456198686535182028833308441537806537104958} a^{6} - \frac{19085366609299578630126821509931083874028623382736445648132522174013139300}{38552595942067648426185008521552076033114422530338138884740256301089517493} a^{5} + \frac{1560146457520768617393215909620635765806247918977299538626302045560452609}{25701730628045098950790005681034717355409615020225425923160170867393011662} a^{4} + \frac{27113547451802708966594831914762631033421733601703869193851742593686168849}{115657787826202945278555025564656228099343267591014416654220768903268552479} a^{3} - \frac{70855059675301119856111199288629960202068516851328196863566222788178023771}{231315575652405890557110051129312456198686535182028833308441537806537104958} a^{2} + \frac{6237037104115399767506424006917193370145661203179585065420372180658813816}{12850865314022549475395002840517358677704807510112712961580085433696505831} a + \frac{806035814839278678538764748889396103100450637133221004633154919816821722}{12850865314022549475395002840517358677704807510112712961580085433696505831}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42527132768700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 48 conjugacy class representatives for t16n1518 |
| Character table for t16n1518 is not computed |
Intermediate fields
| 4.4.26569.1, 8.8.122122734653.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $163$ | 163.4.2.2 | $x^{4} - 163 x^{2} + 292259$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 163.12.8.1 | $x^{12} - 489 x^{9} + 79707 x^{6} - 4330747 x^{3} + 52299590548968$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $173$ | 173.4.2.1 | $x^{4} + 1557 x^{2} + 748225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 173.6.0.1 | $x^{6} - x + 19$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 173.6.3.2 | $x^{6} - 29929 x^{2} + 25888585$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |