Normalized defining polynomial
\( x^{16} - 2 x^{15} - 33 x^{14} + 56 x^{13} + 350 x^{12} - 474 x^{11} - 1580 x^{10} + 1408 x^{9} + 3435 x^{8} - 1346 x^{7} - 3452 x^{6} + 24 x^{5} + 1268 x^{4} + 236 x^{3} - 99 x^{2} - 20 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8325384592016962870050816=2^{26}\cdot 3^{14}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{4}$, $\frac{1}{39} a^{14} - \frac{2}{39} a^{13} - \frac{1}{39} a^{12} + \frac{5}{39} a^{11} + \frac{2}{13} a^{10} - \frac{2}{39} a^{9} + \frac{1}{13} a^{8} + \frac{6}{13} a^{7} - \frac{6}{13} a^{6} + \frac{10}{39} a^{5} - \frac{11}{39} a^{4} - \frac{7}{39} a^{3} - \frac{7}{39} a^{2} + \frac{4}{13} a - \frac{11}{39}$, $\frac{1}{107062832808711} a^{15} - \frac{433562169242}{35687610936237} a^{14} - \frac{4362951122444}{35687610936237} a^{13} - \frac{1879194572179}{107062832808711} a^{12} - \frac{2551721749624}{35687610936237} a^{11} + \frac{1959494827832}{35687610936237} a^{10} + \frac{7482396683218}{107062832808711} a^{9} + \frac{240455446004}{2745200841249} a^{8} + \frac{14247414616874}{35687610936237} a^{7} - \frac{43089973256186}{107062832808711} a^{6} + \frac{1798004132000}{35687610936237} a^{5} - \frac{1839788318617}{35687610936237} a^{4} - \frac{9949964225803}{107062832808711} a^{3} + \frac{11934563550226}{35687610936237} a^{2} + \frac{15207071193763}{35687610936237} a + \frac{11941405308886}{107062832808711}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19480556.338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4^2:C_2^2.C_2$ (as 16T406):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_4^2:C_2^2.C_2$ |
| Character table for $C_4^2:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{11}) \), 4.4.13068.1 x2, 4.4.4752.1 x2, \(\Q(\sqrt{3}, \sqrt{11})\), 8.8.2732361984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.18.3 | $x^{8} + 14 x^{6} + 10 x^{4} + 8 x^{3} + 12 x^{2} + 20$ | $4$ | $2$ | $18$ | $Q_8:C_2$ | $[2, 3, 7/2]^{2}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |