Normalized defining polynomial
\( x^{16} - 3 x^{15} - 288 x^{14} + 351 x^{13} + 32164 x^{12} + 6818 x^{11} - 1712220 x^{10} - 2050498 x^{9} + 43855038 x^{8} + 73975139 x^{7} - 504661128 x^{6} - 805577043 x^{5} + 2530948457 x^{4} + 2475352300 x^{3} - 4676812808 x^{2} - 174707192 x + 1104680656 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(82717106576700383216526055870773061489=17^{14}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $234.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{12} - \frac{3}{20} a^{11} + \frac{1}{10} a^{10} + \frac{3}{20} a^{9} + \frac{3}{10} a^{8} + \frac{1}{20} a^{7} - \frac{1}{10} a^{6} + \frac{1}{4} a^{5} - \frac{1}{20} a^{4} - \frac{3}{20} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{11800} a^{14} + \frac{6}{295} a^{13} + \frac{119}{2950} a^{12} + \frac{2379}{11800} a^{11} - \frac{79}{2360} a^{10} - \frac{5091}{11800} a^{9} - \frac{3313}{11800} a^{8} + \frac{39}{11800} a^{7} - \frac{1057}{11800} a^{6} + \frac{251}{2950} a^{5} + \frac{642}{1475} a^{4} + \frac{4581}{11800} a^{3} + \frac{3}{1475} a^{2} - \frac{438}{1475} a - \frac{428}{1475}$, $\frac{1}{255761287648858184865675965990410247573015833823922963179041000} a^{15} + \frac{7252525927889299826219604501923435480658458293414029298611}{255761287648858184865675965990410247573015833823922963179041000} a^{14} + \frac{163994284870570811324891406315332084813273979473779867783202}{31970160956107273108209495748801280946626979227990370397380125} a^{13} + \frac{505195798540041570858613730732336568787445680176321859416583}{10230451505954327394627038639616409902920633352956918527161640} a^{12} + \frac{26247281076607544835635968469675061704112895589376332109091357}{127880643824429092432837982995205123786507916911961481589520500} a^{11} - \frac{15534533528049949913263432217339116172574562518461137153582759}{63940321912214546216418991497602561893253958455980740794760250} a^{10} + \frac{18209720572015080904743810825129122084440999008638560688631463}{127880643824429092432837982995205123786507916911961481589520500} a^{9} + \frac{14151036757238053792279874484474673196222167261634927180390852}{31970160956107273108209495748801280946626979227990370397380125} a^{8} + \frac{9960497964714486422874429285377262832610672518462060943375453}{63940321912214546216418991497602561893253958455980740794760250} a^{7} - \frac{18884261281585324861653603848075687869574828539498489665805043}{255761287648858184865675965990410247573015833823922963179041000} a^{6} + \frac{4689704233735410011366412073519348916719618279082339808679511}{12788064382442909243283798299520512378650791691196148158952050} a^{5} - \frac{27495017877372886477435630320895706635937369405102539224325963}{255761287648858184865675965990410247573015833823922963179041000} a^{4} - \frac{2194032408558700517232041427786174980728896189330035967097493}{10230451505954327394627038639616409902920633352956918527161640} a^{3} - \frac{18988234162451825829825181633435107850224715691847412049374}{255761287648858184865675965990410247573015833823922963179041} a^{2} - \frac{25416206034176036922859451085498550406773038384237908791583077}{63940321912214546216418991497602561893253958455980740794760250} a - \frac{5834250689094094967337233128641496628967148922485884922211163}{31970160956107273108209495748801280946626979227990370397380125}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11079174313200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $Q_{16}$ |
| Character table for $Q_{16}$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{901}) \), \(\Q(\sqrt{17}, \sqrt{53})\), 4.4.260389.1 x2, 4.4.13800617.1 x2, 8.8.190457029580689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.4 | $x^{8} - 12393$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.4 | $x^{8} - 12393$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $53$ | 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.1 | $x^{4} - 53$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |