Properties

Label 16.16.8214651587...0000.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{48}\cdot 3^{4}\cdot 5^{4}\cdot 7^{8}$
Root discriminant $41.65$
Ramified primes $2, 3, 5, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^4:C_2^2$ (as 16T119)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 216, 948, 456, -3784, -5480, 2392, 8448, 2892, -3064, -1844, 392, 372, -16, -32, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 32*x^14 - 16*x^13 + 372*x^12 + 392*x^11 - 1844*x^10 - 3064*x^9 + 2892*x^8 + 8448*x^7 + 2392*x^6 - 5480*x^5 - 3784*x^4 + 456*x^3 + 948*x^2 + 216*x + 9)
 
gp: K = bnfinit(x^16 - 32*x^14 - 16*x^13 + 372*x^12 + 392*x^11 - 1844*x^10 - 3064*x^9 + 2892*x^8 + 8448*x^7 + 2392*x^6 - 5480*x^5 - 3784*x^4 + 456*x^3 + 948*x^2 + 216*x + 9, 1)
 

Normalized defining polynomial

\( x^{16} - 32 x^{14} - 16 x^{13} + 372 x^{12} + 392 x^{11} - 1844 x^{10} - 3064 x^{9} + 2892 x^{8} + 8448 x^{7} + 2392 x^{6} - 5480 x^{5} - 3784 x^{4} + 456 x^{3} + 948 x^{2} + 216 x + 9 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(82146515877838674984960000=2^{48}\cdot 3^{4}\cdot 5^{4}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.65$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{177} a^{14} - \frac{7}{59} a^{13} - \frac{74}{177} a^{12} - \frac{1}{177} a^{11} + \frac{9}{59} a^{10} - \frac{46}{177} a^{9} + \frac{64}{177} a^{8} - \frac{67}{177} a^{7} - \frac{21}{59} a^{6} + \frac{2}{59} a^{5} - \frac{50}{177} a^{4} - \frac{71}{177} a^{3} + \frac{86}{177} a^{2} + \frac{7}{59} a + \frac{11}{59}$, $\frac{1}{7216171068567} a^{15} + \frac{4880105818}{2405390356189} a^{14} - \frac{1469279997581}{7216171068567} a^{13} - \frac{2702982465511}{7216171068567} a^{12} - \frac{586080549931}{2405390356189} a^{11} - \frac{3082274794156}{7216171068567} a^{10} + \frac{2951562149494}{7216171068567} a^{9} - \frac{2759172118279}{7216171068567} a^{8} - \frac{1196176160612}{2405390356189} a^{7} + \frac{928988072912}{2405390356189} a^{6} + \frac{2053433404063}{7216171068567} a^{5} + \frac{288172014439}{7216171068567} a^{4} - \frac{414832015276}{7216171068567} a^{3} - \frac{108788367141}{2405390356189} a^{2} - \frac{961666497779}{2405390356189} a - \frac{791032020321}{2405390356189}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 103937544.902 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4:C_2^2$ (as 16T119):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 22 conjugacy class representatives for $C_2^4:C_2^2$
Character table for $C_2^4:C_2^2$ is not computed

Intermediate fields

\(\Q(\sqrt{7}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{14}) \), 4.4.25088.1 x2, 4.4.7168.1 x2, \(\Q(\sqrt{2}, \sqrt{7})\), 8.8.2265867878400.1, 8.8.566466969600.1, 8.8.10070523904.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
$5$5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$