Normalized defining polynomial
\( x^{16} - 6 x^{15} - 212 x^{14} + 1162 x^{13} + 17428 x^{12} - 81548 x^{11} - 745869 x^{10} + 2695196 x^{9} + 18559353 x^{8} - 44414652 x^{7} - 275403616 x^{6} + 325908724 x^{5} + 2293812968 x^{4} - 325075504 x^{3} - 8596723528 x^{2} - 5263277392 x + 4182359056 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79688620999701608976000000000000=2^{16}\cdot 3^{8}\cdot 5^{12}\cdot 29^{4}\cdot 181^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{5}{12} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{13} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{5}{12} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{20136} a^{14} + \frac{29}{839} a^{13} - \frac{22}{2517} a^{12} + \frac{41}{10068} a^{11} + \frac{245}{1678} a^{10} - \frac{521}{5034} a^{9} - \frac{653}{20136} a^{8} + \frac{4559}{10068} a^{7} - \frac{9455}{20136} a^{6} - \frac{3595}{10068} a^{5} - \frac{2239}{5034} a^{4} - \frac{1169}{5034} a^{3} - \frac{407}{5034} a^{2} - \frac{436}{2517} a + \frac{568}{2517}$, $\frac{1}{25338737260398116705956689361000265667775624105368024} a^{15} - \frac{1299886823250599566675263617602506552766939375}{103847283854090642237527415413935515031867311907246} a^{14} - \frac{521677378274693024485885558612043093162523608557273}{12669368630199058352978344680500132833887812052684012} a^{13} - \frac{389700670046291053101754866801232098850906435721449}{12669368630199058352978344680500132833887812052684012} a^{12} - \frac{32084256317881425094910741288799741475287366466117}{333404437636817325078377491592108758786521369807474} a^{11} - \frac{4308386734882250741885380983045653012054272804728}{55567406272802887513062915265351459797753561634579} a^{10} + \frac{10323094041896111797997274869356986658273030358106331}{25338737260398116705956689361000265667775624105368024} a^{9} + \frac{1175568065700557539260339071898106023463239802462513}{12669368630199058352978344680500132833887812052684012} a^{8} - \frac{1607843282165765075832508348137894435127968236682277}{25338737260398116705956689361000265667775624105368024} a^{7} - \frac{2049242692992450442688705555702221218667936434663699}{4223122876733019450992781560166710944629270684228004} a^{6} - \frac{884485111651979962313012701383090177558082294017343}{12669368630199058352978344680500132833887812052684012} a^{5} - \frac{777877224377716402216149377316496919727514816245007}{2111561438366509725496390780083355472314635342114002} a^{4} - \frac{677055905680620633524960538830821314251750029843643}{6334684315099529176489172340250066416943906026342006} a^{3} - \frac{431312275953460022137335087604727381422343175797901}{1055780719183254862748195390041677736157317671057001} a^{2} - \frac{237451297347688757001036034385272078467411675174624}{1055780719183254862748195390041677736157317671057001} a - \frac{1205275385063104953076147860193361612540177910083714}{3167342157549764588244586170125033208471953013171003}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53162893092.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T203):
| A solvable group of order 128 |
| The 41 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{15}) \), \(\Q(\zeta_{20})^+\), \(\Q(\zeta_{15})^+\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\zeta_{60})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 181 | Data not computed | ||||||