Normalized defining polynomial
\( x^{16} - x^{15} - 59 x^{14} + 93 x^{13} + 1231 x^{12} - 2708 x^{11} - 10417 x^{10} + 31709 x^{9} + 24297 x^{8} - 148144 x^{7} + 81692 x^{6} + 184877 x^{5} - 244557 x^{4} + 69777 x^{3} + 19997 x^{2} - 9338 x + 821 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7921586895449647259644140625=5^{8}\cdot 19^{8}\cdot 103^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{12} - \frac{2}{9} a^{10} - \frac{4}{9} a^{9} - \frac{1}{9} a^{8} - \frac{2}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{9}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{12} - \frac{2}{27} a^{11} + \frac{7}{27} a^{10} + \frac{4}{9} a^{9} - \frac{10}{27} a^{8} + \frac{11}{27} a^{6} - \frac{10}{27} a^{5} + \frac{11}{27} a^{4} - \frac{8}{27} a^{3} + \frac{7}{27} a^{2} - \frac{10}{27} a - \frac{8}{27}$, $\frac{1}{1377} a^{14} - \frac{2}{1377} a^{13} - \frac{28}{1377} a^{12} + \frac{7}{153} a^{11} + \frac{356}{1377} a^{10} + \frac{140}{1377} a^{9} - \frac{233}{1377} a^{8} + \frac{200}{1377} a^{7} - \frac{11}{27} a^{6} + \frac{16}{459} a^{5} + \frac{656}{1377} a^{4} - \frac{94}{459} a^{3} + \frac{577}{1377} a^{2} + \frac{434}{1377} a + \frac{494}{1377}$, $\frac{1}{12110299291023731404205193} a^{15} + \frac{369148980574325738443}{4036766430341243801401731} a^{14} + \frac{39715704675138986541421}{12110299291023731404205193} a^{13} - \frac{536383587746190725885579}{12110299291023731404205193} a^{12} + \frac{232592907696228227330804}{1730042755860533057743599} a^{11} - \frac{23194970741834630193934}{237456848843602576553043} a^{10} + \frac{3273901586526039288777710}{12110299291023731404205193} a^{9} + \frac{401124622867246285499014}{12110299291023731404205193} a^{8} - \frac{3106815318138647172137447}{12110299291023731404205193} a^{7} - \frac{1997066364394228147436170}{4036766430341243801401731} a^{6} - \frac{1573936544744898463440049}{12110299291023731404205193} a^{5} - \frac{204862983277636317712049}{12110299291023731404205193} a^{4} + \frac{744602046589348793605186}{1730042755860533057743599} a^{3} + \frac{2525713024913597271997672}{12110299291023731404205193} a^{2} - \frac{99371684674800244387817}{448529603371249311266859} a + \frac{4192254737902047745842313}{12110299291023731404205193}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 616122428.353 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2.D_6$ (as 16T754):
| A solvable group of order 384 |
| The 23 conjugacy class representatives for $Q_8:C_2^2.D_6$ |
| Character table for $Q_8:C_2^2.D_6$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.1957.1, 8.8.2393655625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $103$ | 103.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 103.4.2.2 | $x^{4} - 103 x^{2} + 53045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 103.8.4.1 | $x^{8} + 106090 x^{4} - 1092727 x^{2} + 2813772025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |