Normalized defining polynomial
\( x^{16} - 5 x^{15} - 1567 x^{14} + 5036 x^{13} + 913132 x^{12} - 2632325 x^{11} - 251203331 x^{10} + 944435243 x^{9} + 33537176305 x^{8} - 194082565895 x^{7} - 1854337101495 x^{6} + 17178191896767 x^{5} + 713563290839 x^{4} - 408109365395354 x^{3} + 1450005309994863 x^{2} - 1532647000809550 x - 134701390338101 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(788235353584876852533663970039941030620064481=37^{12}\cdot 149^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $639.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{266072926939294628691226261625935881971919389122856509385373603736903557895692914006243453149266424653} a^{15} - \frac{380588752706134433224783207564472278548511339016799198208963932321744618109698438279555335916781225}{3971237715511860129719794949640834059282378942132186707244382145326918774562580806063335121630842159} a^{14} - \frac{5134295669337470520648207559688260009925463169379460381259840673400271144396758748140953755328686026}{88690975646431542897075420541978627323973129707618836461791201245634519298564304668747817716422141551} a^{13} - \frac{6120426620488275652629320748055654155632050788798431083595561467961016283702819571910824785217652715}{266072926939294628691226261625935881971919389122856509385373603736903557895692914006243453149266424653} a^{12} - \frac{90112310805519817352267146844796964311607774665115137014180668596995954945007723509333220447625327001}{266072926939294628691226261625935881971919389122856509385373603736903557895692914006243453149266424653} a^{11} - \frac{956558789312586844822093388109769744027278636280203520136805018237310938159926010711305261429759000}{5020243904514992994174080408036526074941875266468990743120256674281199205579111585023461380174838201} a^{10} + \frac{14890935327313821804102260369673479292252893440948954565165689002036842388174991632715491756214087930}{266072926939294628691226261625935881971919389122856509385373603736903557895692914006243453149266424653} a^{9} - \frac{5688011842210369964787186689898308399980911789472526304080819776099050109434381640059646376982036171}{88690975646431542897075420541978627323973129707618836461791201245634519298564304668747817716422141551} a^{8} - \frac{14162268421084731083113152128126789465627299146318739287469785534371436730246821938930811238138553}{266072926939294628691226261625935881971919389122856509385373603736903557895692914006243453149266424653} a^{7} + \frac{128418474301599816775327222496531655772581704036592198208988751788103459755261931280592491080022626548}{266072926939294628691226261625935881971919389122856509385373603736903557895692914006243453149266424653} a^{6} - \frac{28613069799474700500099672881113900945895827685560776827279642220365611940380098216413932168468024125}{88690975646431542897075420541978627323973129707618836461791201245634519298564304668747817716422141551} a^{5} - \frac{13862798507636662090319904232995023749014994645250197481770404030342989310363842529462423957207329111}{266072926939294628691226261625935881971919389122856509385373603736903557895692914006243453149266424653} a^{4} + \frac{15313664772225452430972765459579685990010345913565244081218411297055005639729218296657122927600358835}{88690975646431542897075420541978627323973129707618836461791201245634519298564304668747817716422141551} a^{3} + \frac{77843543245770070747887409654178057918461955411687767094830519812524087051608781653294317021471120293}{266072926939294628691226261625935881971919389122856509385373603736903557895692914006243453149266424653} a^{2} + \frac{21331581445343389059333356994989214907528452272831227749595418805126083441248900092805307221983348275}{88690975646431542897075420541978627323973129707618836461791201245634519298564304668747817716422141551} a - \frac{12975106231825056143813526984178377207280805346233174332251916519121244362422884059688794163979153286}{266072926939294628691226261625935881971919389122856509385373603736903557895692914006243453149266424653}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51119672626600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $Q_{16}$ |
| Character table for $Q_{16}$ |
Intermediate fields
| \(\Q(\sqrt{5513}) \), \(\Q(\sqrt{149}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{37}, \sqrt{149})\), 4.4.821437.1 x2, 4.4.203981.1 x2, 8.8.923744721862561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $149$ | 149.4.3.2 | $x^{4} - 596$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 149.4.3.2 | $x^{4} - 596$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 149.4.3.2 | $x^{4} - 596$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 149.4.3.2 | $x^{4} - 596$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |