Normalized defining polynomial
\( x^{16} - 8 x^{15} + 8 x^{14} + 84 x^{13} - 210 x^{12} - 196 x^{11} + 1024 x^{10} - 368 x^{9} - 1691 x^{8} + 1668 x^{7} + 492 x^{6} - 1280 x^{5} + 468 x^{4} + 60 x^{3} - 56 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(780855280180961608728576=2^{44}\cdot 3^{12}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{23} a^{13} + \frac{5}{23} a^{12} + \frac{1}{23} a^{11} - \frac{3}{23} a^{10} - \frac{10}{23} a^{9} - \frac{11}{23} a^{8} - \frac{7}{23} a^{7} + \frac{10}{23} a^{6} - \frac{7}{23} a^{5} + \frac{3}{23} a^{4} + \frac{1}{23} a^{3} + \frac{9}{23} a^{2} + \frac{5}{23} a - \frac{10}{23}$, $\frac{1}{1081} a^{14} - \frac{7}{1081} a^{13} - \frac{358}{1081} a^{12} + \frac{77}{1081} a^{11} - \frac{250}{1081} a^{10} + \frac{17}{1081} a^{9} - \frac{13}{1081} a^{8} + \frac{2}{1081} a^{7} - \frac{265}{1081} a^{6} - \frac{396}{1081} a^{5} + \frac{103}{1081} a^{4} + \frac{457}{1081} a^{3} - \frac{379}{1081} a^{2} - \frac{70}{1081} a - \frac{271}{1081}$, $\frac{1}{1081} a^{15} + \frac{16}{1081} a^{13} - \frac{314}{1081} a^{12} - \frac{369}{1081} a^{11} + \frac{241}{1081} a^{10} + \frac{200}{1081} a^{9} - \frac{418}{1081} a^{8} + \frac{31}{1081} a^{7} - \frac{183}{1081} a^{6} - \frac{225}{1081} a^{5} + \frac{285}{1081} a^{4} + \frac{3}{1081} a^{2} + \frac{273}{1081} a + \frac{359}{1081}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4986811.01116 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T43):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), 4.4.13824.1 x2, 4.4.27648.1 x2, 4.4.4352.1, \(\Q(\sqrt{2}, \sqrt{3})\), 4.4.9792.1, 8.8.1534132224.1, 8.8.3057647616.1, 8.8.883660161024.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |