Normalized defining polynomial
\( x^{16} - x^{15} - 67 x^{14} + 67 x^{13} + 1837 x^{12} - 1837 x^{11} - 26451 x^{10} + 26451 x^{9} + 212909 x^{8} - 212909 x^{7} - 936019 x^{6} + 936019 x^{5} + 1988525 x^{4} - 1988525 x^{3} - 1353811 x^{2} + 1353811 x - 239699 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7336077203498398991356640625=3^{8}\cdot 5^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(194,·)$, $\chi_{255}(196,·)$, $\chi_{255}(74,·)$, $\chi_{255}(76,·)$, $\chi_{255}(14,·)$, $\chi_{255}(16,·)$, $\chi_{255}(209,·)$, $\chi_{255}(151,·)$, $\chi_{255}(29,·)$, $\chi_{255}(224,·)$, $\chi_{255}(164,·)$, $\chi_{255}(166,·)$, $\chi_{255}(106,·)$, $\chi_{255}(44,·)$, $\chi_{255}(121,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{27403} a^{9} + \frac{3683}{27403} a^{8} - \frac{36}{27403} a^{7} - \frac{8244}{27403} a^{6} + \frac{432}{27403} a^{5} + \frac{231}{27403} a^{4} - \frac{1920}{27403} a^{3} + \frac{10222}{27403} a^{2} + \frac{2304}{27403} a - \frac{5111}{27403}$, $\frac{1}{27403} a^{10} - \frac{40}{27403} a^{8} - \frac{12671}{27403} a^{7} + \frac{560}{27403} a^{6} - \frac{1451}{27403} a^{5} - \frac{3200}{27403} a^{4} + \frac{11608}{27403} a^{3} + \frac{6400}{27403} a^{2} + \frac{4187}{27403} a - \frac{2048}{27403}$, $\frac{1}{27403} a^{11} - \frac{2366}{27403} a^{8} - \frac{880}{27403} a^{7} - \frac{2375}{27403} a^{6} - \frac{13323}{27403} a^{5} - \frac{6555}{27403} a^{4} + \frac{11809}{27403} a^{3} + \frac{2022}{27403} a^{2} + \frac{7903}{27403} a - \frac{12619}{27403}$, $\frac{1}{27403} a^{12} - \frac{1056}{27403} a^{8} - \frac{5342}{27403} a^{7} - \frac{7691}{27403} a^{6} + \frac{1646}{27403} a^{5} + \frac{10295}{27403} a^{4} + \frac{8200}{27403} a^{3} - \frac{3694}{27403} a^{2} + \frac{12851}{27403} a - \frac{7903}{27403}$, $\frac{1}{27403} a^{13} - \frac{7320}{27403} a^{8} + \frac{9099}{27403} a^{7} + \frac{10136}{27403} a^{6} + \frac{636}{27403} a^{5} + \frac{5509}{27403} a^{4} - \frac{3392}{27403} a^{3} + \frac{10501}{27403} a^{2} + \frac{13657}{27403} a + \frac{1175}{27403}$, $\frac{1}{27403} a^{14} + \frac{4107}{27403} a^{8} - \frac{6757}{27403} a^{7} - \frac{4038}{27403} a^{6} - \frac{10999}{27403} a^{5} - \frac{11458}{27403} a^{4} - \frac{13563}{27403} a^{3} + \frac{1104}{27403} a^{2} + \frac{13610}{27403} a - \frac{7425}{27403}$, $\frac{1}{27403} a^{15} - \frac{6382}{27403} a^{8} + \frac{6799}{27403} a^{7} + \frac{4404}{27403} a^{6} - \frac{4487}{27403} a^{5} - \frac{3175}{27403} a^{4} - \frac{5520}{27403} a^{3} + \frac{13252}{27403} a^{2} + \frac{11485}{27403} a + \frac{179}{27403}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 240645181.88595447 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||