Normalized defining polynomial
\( x^{16} - 3 x^{15} - 569 x^{14} + 3985 x^{13} + 110105 x^{12} - 1255302 x^{11} - 6017305 x^{10} + 141442454 x^{9} - 386991894 x^{8} - 4380441354 x^{7} + 34047900007 x^{6} - 66542719513 x^{5} - 128137329112 x^{4} + 622983352474 x^{3} - 407875925600 x^{2} - 585981669666 x + 146245588969 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(706991024666918541719408792174287819307153=17^{15}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $412.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{67} a^{13} + \frac{26}{67} a^{12} + \frac{23}{67} a^{11} - \frac{7}{67} a^{10} + \frac{17}{67} a^{9} - \frac{1}{67} a^{8} - \frac{24}{67} a^{7} + \frac{1}{67} a^{6} - \frac{19}{67} a^{5} - \frac{15}{67} a^{4} - \frac{12}{67} a^{3} - \frac{18}{67} a^{2} - \frac{9}{67} a - \frac{11}{67}$, $\frac{1}{871} a^{14} - \frac{5}{871} a^{13} + \frac{21}{871} a^{12} + \frac{419}{871} a^{11} - \frac{168}{871} a^{10} - \frac{20}{67} a^{9} + \frac{16}{67} a^{8} + \frac{75}{871} a^{7} + \frac{419}{871} a^{6} - \frac{163}{871} a^{5} + \frac{185}{871} a^{4} + \frac{19}{871} a^{3} + \frac{415}{871} a^{2} + \frac{408}{871}$, $\frac{1}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{15} + \frac{35352135003902983617501052017030028192830541458140697352790747022376}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{14} - \frac{664614045716794451415052635840725218760678719746805995739383639174125}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{13} + \frac{22231374688266891990400625013318590832303034084007006646283014707050794}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{12} - \frac{58513323326256711736101365078630475418174379904987935366997025805234909}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{11} - \frac{57962051316850517711147930506165491108207952313944195267209631511819640}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{10} - \frac{2873222762284371235555062147703715372389391438300734968669361382525588}{10493966348975693273292552081704336914644924502500166846341738406041839} a^{9} - \frac{64329685419849606906309204284662094601526188070912255907967640420857664}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{8} - \frac{33573697902735023003545555662454488895470452267132122698465841119190272}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{7} - \frac{33217421321806907647433404224482001925088488065538122182477777260744733}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{6} - \frac{26972324098493518686588751834503794695269733928264812435380453252534893}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{5} - \frac{66444426441775768807106152708218748041965924700616523542317229360866259}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{4} - \frac{63528390429130089315022455555222951157271087335913461950936197360581825}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{3} + \frac{20244200382538588245697311019658264016231286164334350707144497685628995}{136421562536684012552803177062156379890384018532502169002442599278543907} a^{2} + \frac{58701369274580027398718380017257702543057289260666801676810620031535250}{136421562536684012552803177062156379890384018532502169002442599278543907} a + \frac{29033643965474469063735702738424240205689316968800575177228422799803}{307949351098609509148539903074845101332695301427770133188358011915449}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2175501728390000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.25745567912986193.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |