Normalized defining polynomial
\( x^{16} - x^{15} - 33 x^{14} + 33 x^{13} + 392 x^{12} - 375 x^{11} - 2107 x^{10} + 1886 x^{9} + 5305 x^{8} - 4506 x^{7} - 5677 x^{6} + 4810 x^{5} + 1837 x^{4} - 1463 x^{3} - 118 x^{2} + 16 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(698833752810013621337890625=5^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(85=5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{85}(1,·)$, $\chi_{85}(3,·)$, $\chi_{85}(7,·)$, $\chi_{85}(9,·)$, $\chi_{85}(16,·)$, $\chi_{85}(81,·)$, $\chi_{85}(19,·)$, $\chi_{85}(21,·)$, $\chi_{85}(27,·)$, $\chi_{85}(48,·)$, $\chi_{85}(49,·)$, $\chi_{85}(73,·)$, $\chi_{85}(57,·)$, $\chi_{85}(59,·)$, $\chi_{85}(62,·)$, $\chi_{85}(63,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{463} a^{14} - \frac{156}{463} a^{13} - \frac{161}{463} a^{12} + \frac{64}{463} a^{11} + \frac{44}{463} a^{10} + \frac{181}{463} a^{9} - \frac{89}{463} a^{8} + \frac{80}{463} a^{7} + \frac{126}{463} a^{6} - \frac{184}{463} a^{4} - \frac{6}{463} a^{3} + \frac{81}{463} a^{2} - \frac{125}{463} a + \frac{2}{463}$, $\frac{1}{351018501008279} a^{15} + \frac{344113164156}{351018501008279} a^{14} - \frac{8439753760130}{27001423154483} a^{13} + \frac{138597424287407}{351018501008279} a^{12} - \frac{2358473477753}{27001423154483} a^{11} - \frac{61050706840537}{351018501008279} a^{10} + \frac{72514622261540}{351018501008279} a^{9} - \frac{40063171557216}{351018501008279} a^{8} + \frac{113240366620637}{351018501008279} a^{7} - \frac{106445692151310}{351018501008279} a^{6} + \frac{94784769429426}{351018501008279} a^{5} - \frac{157657643311108}{351018501008279} a^{4} - \frac{13662060308561}{351018501008279} a^{3} + \frac{101370919773891}{351018501008279} a^{2} - \frac{78696899598101}{351018501008279} a - \frac{130574707397540}{351018501008279}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 64656853.0779 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.256461670625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||