Normalized defining polynomial
\( x^{16} - 8 x^{15} - 624 x^{14} + 3888 x^{13} + 153884 x^{12} - 652752 x^{11} - 18836896 x^{10} + 41048896 x^{9} + 1164628660 x^{8} - 369211456 x^{7} - 32677192552 x^{6} - 29700370768 x^{5} + 365137419440 x^{4} + 614616142256 x^{3} - 995680684832 x^{2} - 1808592898624 x + 433872087934 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6896992068684009105950840251291271168=2^{62}\cdot 113^{3}\cdot 1009^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113, 1009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{15} - \frac{342425812559226406258129885272848056754915811641467347186010204824252139875107426394273}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{14} + \frac{1366918231621701574821679379043879945474779421219424616732634400850884184514127014587539}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{13} + \frac{577691171786113880230089042102233998163472923266192537879463819961271463861708012070820}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{12} + \frac{1404448556774316436177644599923394370369141851967658529534384332350134375439084855883266}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{11} - \frac{1394338994609840028882316104600878853464125658580459489015075402822101267621173403773072}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{10} + \frac{1550302428337747111476215742892514940039897760757648880749320374656357109688756966229399}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{9} + \frac{1842738096272694341883107125370562887828497577218252190025264720707533517322378521445802}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{8} - \frac{356994733861678490399375560738722702763206051353651296061096535970740441673545777680116}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{7} + \frac{533921210441010159254099385663751101711920329862036266830879291992148943434764136429933}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{6} + \frac{1901709901171076319848238873473693307928331596812727653327357530820513056280395138668648}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{5} + \frac{308913843376076331027780391146968864611840701124708650756956112106658815682303851140199}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{4} - \frac{1507247153359412211225671263297533015955217519526257802776297622222755837379808777814053}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{3} + \frac{1280988364153681228990789969521438795073553000436636137796543648205443842371088875939944}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a^{2} - \frac{879347485970157036080344242198572324830479517480074727173488101420908741288510380641667}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217} a + \frac{1966571567640507247894989219305615986812597526268126627357590231342657744503752483214593}{5241266853003378888031306964556931674040108308912877088821588565834772163680532034709217}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26390203117300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 59 conjugacy class representatives for t16n1354 are not computed |
| Character table for t16n1354 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7583301632.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $113$ | 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1009 | Data not computed | ||||||