Normalized defining polynomial
\( x^{16} - 8 x^{15} - 352 x^{14} + 2592 x^{13} + 50132 x^{12} - 324544 x^{11} - 3800032 x^{10} + 20439024 x^{9} + 166409360 x^{8} - 700013280 x^{7} - 4199520744 x^{6} + 13083333328 x^{5} + 56738103992 x^{4} - 125162855440 x^{3} - 336014595440 x^{2} + 496411645008 x + 448136625922 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6896992068684009105950840251291271168=2^{62}\cdot 113^{3}\cdot 1009^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113, 1009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{15} - \frac{516517524845140074406913866395203622046159107310411479422618550007459}{6597067479648661587594971716680672558554739405385334960712272814921001} a^{14} + \frac{2549603587811244877097849726228277063291991893105997343016044869102407}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{13} - \frac{3227874433081713033477151990962960581326050307224158282221681120161583}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{12} - \frac{23130298094332898428079986266708598306601170730939335614754448642224104}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{11} + \frac{31105753799088969611628575063771410579695799512769440629677718601973289}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{10} + \frac{84843954814410377772872095901001886364135519785345117733147304525096719}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{9} + \frac{81815642033097386471693208863581343700304635167387689722417388718166380}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{8} + \frac{20171317690959659109063702485199147789851819119608919731703169600728048}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{7} + \frac{1963469877790397633811019823788335703822897763041147059257801624548232}{6597067479648661587594971716680672558554739405385334960712272814921001} a^{6} - \frac{254801036890694919505069204935140782468600932908662678624849641037600}{795755221280577856869432386058758168541622262906402271525604892072183} a^{5} - \frac{84410695576184692625465427491851968197805246234135411811421595383392678}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{4} - \frac{90235586074990520055715611692776487499616842334570994817221598400049067}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{3} + \frac{42806967957691626614039280374248147220821773973894022352548275338201637}{204509091869108509215444123217100849315196921566945383782080457262551031} a^{2} + \frac{2392934344407132161480353171170913160936725200977527096024089941356686}{204509091869108509215444123217100849315196921566945383782080457262551031} a - \frac{677052471733307728683684263643128034008041357197787839849045655621496}{2588722681887449483739799028064567712850593943885384604836461484336089}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31042889746300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 59 conjugacy class representatives for t16n1354 are not computed |
| Character table for t16n1354 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7583301632.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 113 | Data not computed | ||||||
| 1009 | Data not computed | ||||||