Normalized defining polynomial
\( x^{16} - 7 x^{15} - 486 x^{14} + 3640 x^{13} + 85482 x^{12} - 680369 x^{11} - 6731288 x^{10} + 57906718 x^{9} + 234236862 x^{8} - 2308745163 x^{7} - 3167386332 x^{6} + 41364170537 x^{5} + 15994510202 x^{4} - 316660788899 x^{3} - 107062029196 x^{2} + 853361887750 x + 670030778699 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(685578251337344185848967768724165145970351361=13^{14}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $634.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{12049} a^{14} - \frac{5289}{12049} a^{13} - \frac{756}{12049} a^{12} + \frac{772}{12049} a^{11} - \frac{5486}{12049} a^{10} + \frac{579}{12049} a^{9} + \frac{4339}{12049} a^{8} - \frac{5965}{12049} a^{7} - \frac{5994}{12049} a^{6} + \frac{1607}{12049} a^{5} - \frac{1377}{12049} a^{4} + \frac{4540}{12049} a^{3} + \frac{5030}{12049} a^{2} - \frac{3946}{12049} a - \frac{1677}{12049}$, $\frac{1}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{15} + \frac{463088400443828630663301795945766765370165013181884508284542312365887}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{14} + \frac{17455327169192467030077843450879448071820107396686706507544392616119164718}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{13} - \frac{19422213533814682133077739065496257987629072822179776996861237695753271820}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{12} - \frac{22485600772272588602766051603604589032442611302200404796178380107549174140}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{11} - \frac{23738103892741485110225204151910293236262647545351585887036388980524471187}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{10} - \frac{1023422726911297613704115403424378166897092196264943077339285215847560573}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{9} + \frac{28724875867031420501638552323676487287025868066605872425855418864594118947}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{8} - \frac{10483787038636549151671906733315718344400425957274709445683653728581364930}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{7} + \frac{12256881219381711072383534542283599543297878201026267663594531223078605744}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{6} + \frac{15554303298670618573515435495027991062111731524871092275512473021049315137}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{5} + \frac{4430845720692003916462822445651403314445640739708108996830581417120097998}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{4} + \frac{271612133996991761818436694627269209847632498608487694104442818910658546}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{3} - \frac{4839691048212396700940084101421293303892015499220050379334516669160116193}{72057101988746016533572780707625737993804032276052729776719294788811893089} a^{2} - \frac{6253752061529753133119134588665920483919651665135459843311275049077981908}{72057101988746016533572780707625737993804032276052729776719294788811893089} a + \frac{15818019925732466468457867744240110233149815839406002503092758127088269163}{72057101988746016533572780707625737993804032276052729776719294788811893089}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55517458750200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.119139761.1, 8.8.213496205355753436961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 89 | Data not computed | ||||||