Normalized defining polynomial
\( x^{16} - 4 x^{15} - 469 x^{14} + 2274 x^{13} + 78273 x^{12} - 399734 x^{11} - 5963666 x^{10} + 27242342 x^{9} + 244580013 x^{8} - 810222424 x^{7} - 5649150424 x^{6} + 9143434322 x^{5} + 65368437133 x^{4} - 4051510228 x^{3} - 225185228471 x^{2} - 81401551558 x + 157226892001 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6788684232836496753984400000000000000=2^{16}\cdot 5^{14}\cdot 61^{8}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{15} + \frac{3292724730659759983811626447768147833571310710578530995666652610542344232455432}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{14} + \frac{2619870796420038731339152082482201009669104439361621401610771366110726601905463}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{13} + \frac{5114839270828945996793395571789568659075845426070732772483651320690398673710594}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{12} - \frac{1173696080519869386275502793338227576044442777765250522049058763652440814538321}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{11} - \frac{1722020739351950709893423036212227291439313283731375348049102363944493333426321}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{10} - \frac{149486076755930946750009024114890394153911028888169501389566603510797183705946}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{9} - \frac{5777655263236179519662900008970196518524490825373462393452110894462205057758865}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{8} - \frac{1201238606640576029963919621243163532251450565175624044709437707699379023626579}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{7} + \frac{5392812149845410556700998641523810269563221718091451514283137132111915212946765}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{6} + \frac{3604153399883443350009059870531917245556822469969920078651034619638456436825249}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{5} - \frac{5228263381581409344157520378600359423679772743433281460631212383326587664795075}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{4} + \frac{5223299586514975072380967472641977921094842729682552931583881516154449759100308}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{3} - \frac{4774798144932032232579627236749516040061812572710998619099795858000564167765814}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a^{2} - \frac{714449435022649170052720126323384090964230859960463309155143264226487227645042}{13303190835948717063749184842983900243904311705134997865424175425769796506419841} a - \frac{516092956638850238440912251446335662606650875633340604296107235788956675809626}{13303190835948717063749184842983900243904311705134997865424175425769796506419841}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8472302079270 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n852 |
| Character table for t16n852 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.14884000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| $97$ | 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |