Normalized defining polynomial
\( x^{16} - 8 x^{15} - 45 x^{14} + 390 x^{13} + 915 x^{12} - 7344 x^{11} - 11793 x^{10} + 66050 x^{9} + 101540 x^{8} - 278030 x^{7} - 507873 x^{6} + 401424 x^{5} + 1140855 x^{4} + 229470 x^{3} - 726420 x^{2} - 502312 x - 87719 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(672331416948912400000000000000=2^{16}\cdot 5^{14}\cdot 29^{6}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{10} a^{12} + \frac{2}{5} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{10} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{7} + \frac{1}{5} a^{6} + \frac{3}{10} a^{5} + \frac{1}{10} a^{3} + \frac{1}{5} a^{2} - \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{30} a^{14} + \frac{1}{30} a^{12} + \frac{1}{15} a^{11} + \frac{1}{15} a^{10} - \frac{1}{30} a^{8} - \frac{1}{5} a^{7} - \frac{4}{15} a^{6} + \frac{2}{5} a^{5} - \frac{7}{15} a^{4} + \frac{4}{15} a^{3} + \frac{7}{15} a^{2} + \frac{1}{5} a + \frac{11}{30}$, $\frac{1}{5229785950263479138068973850} a^{15} + \frac{4812082986315260661049137}{348652396684231942537931590} a^{14} + \frac{19344119477394277325885197}{522978595026347913806897385} a^{13} + \frac{4628733619023388959300971}{522978595026347913806897385} a^{12} + \frac{38381377811844694822332029}{522978595026347913806897385} a^{11} - \frac{33062533855130155343771024}{871630991710579856344828975} a^{10} + \frac{75827603577675732160977529}{1045957190052695827613794770} a^{9} - \frac{5252340245479867173507949}{69730479336846388507586318} a^{8} - \frac{233302841388010073015500429}{1045957190052695827613794770} a^{7} + \frac{21715252107449917860903227}{348652396684231942537931590} a^{6} - \frac{2238332573720474989521208073}{5229785950263479138068973850} a^{5} - \frac{280827188213304949578904571}{1045957190052695827613794770} a^{4} + \frac{269601395279829883909538059}{1045957190052695827613794770} a^{3} - \frac{171950511992793481016087897}{348652396684231942537931590} a^{2} + \frac{6222980351564405472802765}{104595719005269582761379477} a - \frac{225207190750828271586720177}{871630991710579856344828975}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5631345276.64 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T646):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 4.4.58000.1, 4.4.725.1, 8.8.3364000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||