Normalized defining polynomial
\( x^{16} - 208 x^{14} - 144 x^{13} + 16476 x^{12} + 18000 x^{11} - 616768 x^{10} - 682112 x^{9} + 11326242 x^{8} + 7284512 x^{7} - 101458480 x^{6} + 10037264 x^{5} + 359939588 x^{4} - 260086032 x^{3} - 289818592 x^{2} + 347099232 x - 87713567 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(668819629644740011880603666543017984=2^{62}\cdot 449^{4}\cdot 1889^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $173.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 449, 1889$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{8} a$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{8} - \frac{1}{2} a^{6} - \frac{3}{16} a^{4} - \frac{1}{16}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{9} - \frac{1}{2} a^{7} - \frac{3}{16} a^{5} - \frac{1}{16} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{10} - \frac{3}{16} a^{6} - \frac{1}{16} a^{2} - \frac{1}{2}$, $\frac{1}{104471876080662448215059607524672075132109763381744} a^{15} - \frac{1426986923389629990293194475161072626570166813879}{52235938040331224107529803762336037566054881690872} a^{14} - \frac{114683572207455528666728104437634704005783180167}{52235938040331224107529803762336037566054881690872} a^{13} + \frac{650190068756781377176698985943338023085926230769}{104471876080662448215059607524672075132109763381744} a^{12} - \frac{6417160779764781041711334910325372003236410001909}{104471876080662448215059607524672075132109763381744} a^{11} - \frac{1213201896416773147517892828370483419334647684395}{26117969020165612053764901881168018783027440845436} a^{10} + \frac{1739531654041664325732846702573679773467055295573}{52235938040331224107529803762336037566054881690872} a^{9} - \frac{2759962075241238028725375501951299018771931082021}{104471876080662448215059607524672075132109763381744} a^{8} - \frac{14874344310419360234945074447458703762722422111723}{104471876080662448215059607524672075132109763381744} a^{7} + \frac{16914182340212225672367736226511807445399176443955}{52235938040331224107529803762336037566054881690872} a^{6} - \frac{567863294276615646983284324900449259906269968895}{52235938040331224107529803762336037566054881690872} a^{5} + \frac{39606935995291337673965837574600051065028828917725}{104471876080662448215059607524672075132109763381744} a^{4} - \frac{44762495124698476133426480040949016173767815668589}{104471876080662448215059607524672075132109763381744} a^{3} - \frac{1974911978930634415954603942961318428340737865759}{13058984510082806026882450940584009391513720422718} a^{2} - \frac{10570270373083475316004050368323259587714047676459}{52235938040331224107529803762336037566054881690872} a - \frac{26489406902730393251333240502142777778786937874117}{104471876080662448215059607524672075132109763381744}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9934809769120 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 49 conjugacy class representatives for t16n1162 |
| Character table for t16n1162 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.432934850920448.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.8 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.8 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| 449 | Data not computed | ||||||
| 1889 | Data not computed | ||||||