Normalized defining polynomial
\( x^{16} - x^{15} - 84 x^{14} + 84 x^{13} + 2738 x^{12} - 2245 x^{11} - 45100 x^{10} + 20127 x^{9} + 417368 x^{8} + 13038 x^{7} - 2183632 x^{6} - 1155899 x^{5} + 5808017 x^{4} + 5988419 x^{3} - 5013027 x^{2} - 9372458 x - 3484829 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66688975910627504451630153142433=13^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(221=13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{221}(1,·)$, $\chi_{221}(73,·)$, $\chi_{221}(77,·)$, $\chi_{221}(216,·)$, $\chi_{221}(25,·)$, $\chi_{221}(155,·)$, $\chi_{221}(157,·)$, $\chi_{221}(96,·)$, $\chi_{221}(99,·)$, $\chi_{221}(168,·)$, $\chi_{221}(44,·)$, $\chi_{221}(109,·)$, $\chi_{221}(118,·)$, $\chi_{221}(183,·)$, $\chi_{221}(57,·)$, $\chi_{221}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{101} a^{13} + \frac{42}{101} a^{12} + \frac{22}{101} a^{11} - \frac{32}{101} a^{10} - \frac{35}{101} a^{9} - \frac{37}{101} a^{8} - \frac{49}{101} a^{7} - \frac{37}{101} a^{6} - \frac{3}{101} a^{5} + \frac{21}{101} a^{4} - \frac{7}{101} a^{3} - \frac{24}{101} a^{2} + \frac{46}{101} a - \frac{9}{101}$, $\frac{1}{3650443} a^{14} - \frac{14292}{3650443} a^{13} - \frac{1480706}{3650443} a^{12} - \frac{244478}{3650443} a^{11} + \frac{95154}{3650443} a^{10} + \frac{1793847}{3650443} a^{9} - \frac{130029}{3650443} a^{8} + \frac{76735}{3650443} a^{7} - \frac{819813}{3650443} a^{6} - \frac{719123}{3650443} a^{5} - \frac{510495}{3650443} a^{4} + \frac{838422}{3650443} a^{3} + \frac{69342}{3650443} a^{2} + \frac{1679989}{3650443} a - \frac{600517}{3650443}$, $\frac{1}{828523875747811593230268173} a^{15} + \frac{30586985559967174169}{828523875747811593230268173} a^{14} + \frac{263963367238170478576238}{828523875747811593230268173} a^{13} + \frac{711150911345017172139421}{828523875747811593230268173} a^{12} - \frac{324004693860507896070470030}{828523875747811593230268173} a^{11} + \frac{297739655484982208346296298}{828523875747811593230268173} a^{10} + \frac{389321905557731704890979572}{828523875747811593230268173} a^{9} - \frac{292873151295975224594681778}{828523875747811593230268173} a^{8} + \frac{225437116891952383731920622}{828523875747811593230268173} a^{7} - \frac{319349384654434030398598411}{828523875747811593230268173} a^{6} + \frac{33532940027754257190311647}{828523875747811593230268173} a^{5} + \frac{122421019139463875762701878}{828523875747811593230268173} a^{4} - \frac{297327932560836832238832500}{828523875747811593230268173} a^{3} + \frac{262658438955068060018522422}{828523875747811593230268173} a^{2} + \frac{58709840744352613768135452}{828523875747811593230268173} a + \frac{65386209100600121924618985}{828523875747811593230268173}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14623244314.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.11719682839553.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17 | Data not computed | ||||||