Normalized defining polynomial
\( x^{16} - 40 x^{14} + 572 x^{12} - 3680 x^{10} + 11579 x^{8} - 18232 x^{6} + 13832 x^{4} - 4688 x^{2} + 529 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6557827967253220516257857536=2^{48}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(208=2^{4}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{208}(1,·)$, $\chi_{208}(129,·)$, $\chi_{208}(203,·)$, $\chi_{208}(77,·)$, $\chi_{208}(83,·)$, $\chi_{208}(151,·)$, $\chi_{208}(25,·)$, $\chi_{208}(157,·)$, $\chi_{208}(31,·)$, $\chi_{208}(99,·)$, $\chi_{208}(105,·)$, $\chi_{208}(135,·)$, $\chi_{208}(47,·)$, $\chi_{208}(53,·)$, $\chi_{208}(187,·)$, $\chi_{208}(181,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{69} a^{11} + \frac{5}{69} a^{9} + \frac{3}{23} a^{7} + \frac{10}{23} a^{5} - \frac{5}{69} a^{3} - \frac{7}{69} a$, $\frac{1}{207} a^{12} + \frac{28}{207} a^{10} + \frac{32}{207} a^{8} + \frac{10}{69} a^{6} - \frac{5}{207} a^{4} + \frac{16}{207} a^{2} + \frac{1}{9}$, $\frac{1}{207} a^{13} + \frac{1}{207} a^{11} - \frac{34}{207} a^{9} - \frac{2}{69} a^{7} + \frac{13}{207} a^{5} - \frac{56}{207} a^{3} + \frac{74}{207} a$, $\frac{1}{537993} a^{14} - \frac{167}{537993} a^{12} - \frac{1652}{23391} a^{10} - \frac{386}{2599} a^{8} - \frac{2957}{537993} a^{6} + \frac{177976}{537993} a^{4} - \frac{232522}{537993} a^{2} + \frac{35}{339}$, $\frac{1}{537993} a^{15} - \frac{167}{537993} a^{13} + \frac{43}{23391} a^{11} - \frac{932}{7797} a^{9} - \frac{190085}{537993} a^{7} - \frac{266453}{537993} a^{5} + \frac{110546}{537993} a^{3} + \frac{2048}{7797} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 411384624.9155599 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||