Normalized defining polynomial
\( x^{16} - x^{15} - 152 x^{14} + 152 x^{13} + 9487 x^{12} - 9487 x^{11} - 312731 x^{10} + 312731 x^{9} + 5821804 x^{8} - 5821804 x^{7} - 60431174 x^{6} + 60431174 x^{5} + 319017700 x^{4} - 319017700 x^{3} - 656707976 x^{2} + 656707976 x + 75086281 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6445820027252670934883669140625=5^{8}\cdot 7^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(595=5\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{595}(384,·)$, $\chi_{595}(1,·)$, $\chi_{595}(454,·)$, $\chi_{595}(139,·)$, $\chi_{595}(524,·)$, $\chi_{595}(526,·)$, $\chi_{595}(209,·)$, $\chi_{595}(279,·)$, $\chi_{595}(281,·)$, $\chi_{595}(419,·)$, $\chi_{595}(36,·)$, $\chi_{595}(421,·)$, $\chi_{595}(106,·)$, $\chi_{595}(491,·)$, $\chi_{595}(244,·)$, $\chi_{595}(246,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{41771753} a^{9} - \frac{8571045}{41771753} a^{8} - \frac{81}{41771753} a^{7} - \frac{9461055}{41771753} a^{6} + \frac{2187}{41771753} a^{5} - \frac{16870904}{41771753} a^{4} - \frac{21870}{41771753} a^{3} + \frac{12863951}{41771753} a^{2} + \frac{59049}{41771753} a - \frac{19693414}{41771753}$, $\frac{1}{41771753} a^{10} - \frac{90}{41771753} a^{8} + \frac{6404101}{41771753} a^{7} + \frac{2835}{41771753} a^{6} + \frac{14259167}{41771753} a^{5} - \frac{36450}{41771753} a^{4} - \frac{6034488}{41771753} a^{3} + \frac{164025}{41771753} a^{2} - \frac{14616557}{41771753} a - \frac{118098}{41771753}$, $\frac{1}{41771753} a^{11} - \frac{13098395}{41771753} a^{8} - \frac{4455}{41771753} a^{7} - \frac{1800723}{41771753} a^{6} + \frac{160380}{41771753} a^{5} - \frac{20632740}{41771753} a^{4} - \frac{1804275}{41771753} a^{3} + \frac{15301702}{41771753} a^{2} + \frac{5196312}{41771753} a - \frac{17993634}{41771753}$, $\frac{1}{41771753} a^{12} - \frac{5346}{41771753} a^{8} - \frac{18476893}{41771753} a^{7} + \frac{224532}{41771753} a^{6} + \frac{11906320}{41771753} a^{5} - \frac{3247695}{41771753} a^{4} - \frac{17686627}{41771753} a^{3} + \frac{15588936}{41771753} a^{2} - \frac{16645827}{41771753} a - \frac{11691702}{41771753}$, $\frac{1}{41771753} a^{13} - \frac{15670422}{41771753} a^{8} - \frac{208494}{41771753} a^{7} + \frac{18699173}{41771753} a^{6} + \frac{8444007}{41771753} a^{5} + \frac{17447069}{41771753} a^{4} - \frac{17784578}{41771753} a^{3} - \frac{2269219}{41771753} a^{2} + \frac{11581981}{41771753} a - \frac{16173684}{41771753}$, $\frac{1}{41771753} a^{14} - \frac{265356}{41771753} a^{8} + \frac{2547581}{41771753} a^{7} + \frac{12538071}{41771753} a^{6} - \frac{5949230}{41771753} a^{5} + \frac{15414241}{41771753} a^{4} - \frac{18936747}{41771753} a^{3} + \frac{6472301}{41771753} a^{2} + \frac{20474291}{41771753} a + \frac{5748390}{41771753}$, $\frac{1}{41771753} a^{15} + \frac{12737905}{41771753} a^{8} - \frac{8955765}{41771753} a^{7} + \frac{12238996}{41771753} a^{6} + \frac{10943271}{41771753} a^{5} - \frac{10454302}{41771753} a^{4} + \frac{9410248}{41771753} a^{3} + \frac{1172440}{41771753} a^{2} + \frac{10347459}{41771753} a + \frac{6050175}{41771753}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7981880078.469981 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | R | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||