Properties

Label 16.16.6345622812...0000.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}$
Root discriminant $40.99$
Ramified primes $2, 3, 5, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![196, -1176, -3164, 8568, 9374, -17952, -13122, 15576, 10061, -5844, -3894, 816, 644, -36, -44, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 44*x^14 - 36*x^13 + 644*x^12 + 816*x^11 - 3894*x^10 - 5844*x^9 + 10061*x^8 + 15576*x^7 - 13122*x^6 - 17952*x^5 + 9374*x^4 + 8568*x^3 - 3164*x^2 - 1176*x + 196)
 
gp: K = bnfinit(x^16 - 44*x^14 - 36*x^13 + 644*x^12 + 816*x^11 - 3894*x^10 - 5844*x^9 + 10061*x^8 + 15576*x^7 - 13122*x^6 - 17952*x^5 + 9374*x^4 + 8568*x^3 - 3164*x^2 - 1176*x + 196, 1)
 

Normalized defining polynomial

\( x^{16} - 44 x^{14} - 36 x^{13} + 644 x^{12} + 816 x^{11} - 3894 x^{10} - 5844 x^{9} + 10061 x^{8} + 15576 x^{7} - 13122 x^{6} - 17952 x^{5} + 9374 x^{4} + 8568 x^{3} - 3164 x^{2} - 1176 x + 196 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(63456228123711897600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(491,·)$, $\chi_{840}(391,·)$, $\chi_{840}(139,·)$, $\chi_{840}(461,·)$, $\chi_{840}(589,·)$, $\chi_{840}(209,·)$, $\chi_{840}(659,·)$, $\chi_{840}(71,·)$, $\chi_{840}(239,·)$, $\chi_{840}(421,·)$, $\chi_{840}(169,·)$, $\chi_{840}(811,·)$, $\chi_{840}(559,·)$, $\chi_{840}(629,·)$, $\chi_{840}(41,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{10} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{9} - \frac{1}{10} a^{8} - \frac{1}{2} a^{7} - \frac{1}{5} a^{6} - \frac{3}{10} a^{4} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{330} a^{12} - \frac{7}{330} a^{10} + \frac{13}{110} a^{9} + \frac{3}{22} a^{8} + \frac{3}{55} a^{7} - \frac{25}{66} a^{6} + \frac{39}{110} a^{5} - \frac{13}{55} a^{3} + \frac{52}{165} a^{2} + \frac{17}{55} a - \frac{2}{33}$, $\frac{1}{330} a^{13} - \frac{7}{330} a^{11} + \frac{1}{55} a^{10} - \frac{7}{110} a^{9} - \frac{8}{55} a^{8} - \frac{59}{330} a^{7} + \frac{14}{55} a^{6} - \frac{13}{55} a^{4} + \frac{19}{165} a^{3} - \frac{1}{11} a^{2} - \frac{2}{33} a - \frac{2}{5}$, $\frac{1}{2310} a^{14} - \frac{1}{1155} a^{12} + \frac{1}{385} a^{11} - \frac{4}{165} a^{10} + \frac{52}{385} a^{9} + \frac{83}{1155} a^{8} + \frac{139}{385} a^{7} + \frac{139}{462} a^{6} + \frac{167}{385} a^{5} + \frac{19}{1155} a^{4} + \frac{19}{77} a^{3} - \frac{16}{231} a^{2} + \frac{9}{55} a + \frac{8}{33}$, $\frac{1}{19921391829570} a^{15} + \frac{64417735}{569182623702} a^{14} + \frac{1730497176}{3320231971595} a^{13} - \frac{26918110871}{19921391829570} a^{12} - \frac{20414052569}{1422956559255} a^{11} + \frac{212043282919}{6640463943190} a^{10} + \frac{2455181374757}{9960695914785} a^{9} + \frac{187500556766}{1992139182957} a^{8} + \frac{486482488181}{1811035620870} a^{7} - \frac{323339990445}{664046394319} a^{6} - \frac{195713694214}{585923289105} a^{5} + \frac{8923186049}{1171846578210} a^{4} + \frac{1003026139051}{3320231971595} a^{3} - \frac{618842151674}{1422956559255} a^{2} - \frac{89506918805}{284591311851} a + \frac{29275458202}{67759836155}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 100622555.559 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{35}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{70}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{210}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{42}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{2}, \sqrt{35})\), \(\Q(\sqrt{3}, \sqrt{35})\), \(\Q(\sqrt{6}, \sqrt{35})\), \(\Q(\sqrt{2}, \sqrt{105})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{6}, \sqrt{70})\), \(\Q(\sqrt{3}, \sqrt{70})\), \(\Q(\sqrt{10}, \sqrt{14})\), \(\Q(\sqrt{5}, \sqrt{7})\), \(\Q(\sqrt{30}, \sqrt{35})\), \(\Q(\sqrt{15}, \sqrt{21})\), \(\Q(\sqrt{2}, \sqrt{7})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{15})\), \(\Q(\sqrt{2}, \sqrt{21})\), \(\Q(\sqrt{5}, \sqrt{14})\), \(\Q(\sqrt{7}, \sqrt{10})\), \(\Q(\sqrt{21}, \sqrt{30})\), \(\Q(\sqrt{15}, \sqrt{42})\), \(\Q(\sqrt{14}, \sqrt{30})\), \(\Q(\sqrt{10}, \sqrt{42})\), \(\Q(\sqrt{7}, \sqrt{15})\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{3}, \sqrt{14})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{14}, \sqrt{15})\), \(\Q(\sqrt{10}, \sqrt{21})\), \(\Q(\sqrt{7}, \sqrt{30})\), \(\Q(\sqrt{5}, \sqrt{42})\), \(\Q(\sqrt{6}, \sqrt{14})\), \(\Q(\sqrt{6}, \sqrt{10})\), \(\Q(\sqrt{6}, \sqrt{7})\), \(\Q(\sqrt{5}, \sqrt{6})\), 8.8.7965941760000.5, 8.8.98344960000.1, 8.8.7965941760000.8, 8.8.7965941760000.7, 8.8.31116960000.1, 8.8.7965941760000.3, 8.8.7965941760000.9, 8.8.7965941760000.4, 8.8.497871360000.1, 8.8.12745506816.1, 8.8.3317760000.1, 8.8.497871360000.2, 8.8.7965941760000.6, 8.8.7965941760000.2, 8.8.7965941760000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$