Normalized defining polynomial
\( x^{16} - 5 x^{15} - 221 x^{14} + 1528 x^{13} + 11835 x^{12} - 107804 x^{11} - 119494 x^{10} + 2467270 x^{9} - 2022752 x^{8} - 20231211 x^{7} + 28230493 x^{6} + 62582502 x^{5} - 87126427 x^{4} - 66676452 x^{3} + 55262142 x^{2} - 6612084 x + 105543 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61841248347955294332328765542314401=13^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $149.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{36} a^{10} + \frac{1}{36} a^{9} + \frac{1}{18} a^{8} + \frac{1}{36} a^{7} - \frac{4}{9} a^{6} + \frac{1}{9} a^{5} + \frac{5}{36} a^{4} - \frac{2}{9} a^{3} + \frac{13}{36} a^{2} + \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{72} a^{11} + \frac{1}{72} a^{9} - \frac{1}{72} a^{8} - \frac{17}{72} a^{7} + \frac{5}{18} a^{6} + \frac{1}{72} a^{5} + \frac{23}{72} a^{4} + \frac{7}{24} a^{3} + \frac{29}{72} a^{2} - \frac{5}{24} a + \frac{1}{8}$, $\frac{1}{144} a^{12} - \frac{1}{144} a^{11} + \frac{1}{144} a^{10} - \frac{1}{72} a^{9} + \frac{1}{18} a^{8} + \frac{13}{144} a^{7} - \frac{67}{144} a^{6} + \frac{35}{72} a^{5} - \frac{25}{72} a^{4} + \frac{7}{18} a^{3} - \frac{5}{36} a^{2} - \frac{1}{2} a + \frac{7}{16}$, $\frac{1}{288} a^{13} - \frac{1}{288} a^{10} + \frac{1}{48} a^{9} + \frac{7}{96} a^{8} + \frac{5}{16} a^{7} - \frac{47}{96} a^{6} - \frac{31}{72} a^{5} - \frac{23}{48} a^{4} - \frac{3}{8} a^{3} - \frac{23}{72} a^{2} - \frac{1}{32} a - \frac{9}{32}$, $\frac{1}{3456} a^{14} - \frac{1}{3456} a^{13} + \frac{7}{3456} a^{11} - \frac{41}{3456} a^{10} + \frac{167}{3456} a^{9} - \frac{419}{3456} a^{8} + \frac{1121}{3456} a^{7} - \frac{485}{1152} a^{6} - \frac{257}{576} a^{5} + \frac{227}{1728} a^{4} - \frac{169}{432} a^{3} + \frac{49}{128} a^{2} - \frac{1}{3} a + \frac{43}{128}$, $\frac{1}{695120802506074437474985894584061915723391616768} a^{15} - \frac{2551657948233846172463119972439998514871199}{28963366771086434894791078941002579821807984032} a^{14} - \frac{221171860300581091457241960543911001334902841}{695120802506074437474985894584061915723391616768} a^{13} + \frac{842562153374741896701593630270921561714990887}{695120802506074437474985894584061915723391616768} a^{12} - \frac{1599615521942669671844504227143672234271162157}{347560401253037218737492947292030957861695808384} a^{11} + \frac{125467364249016819476542920243178675280599057}{115853467084345739579164315764010319287231936128} a^{10} - \frac{672119165025473276776743016053615991651459261}{19308911180724289929860719294001719881205322688} a^{9} - \frac{5023874654639356692194599290005901702471377485}{38617822361448579859721438588003439762410645376} a^{8} - \frac{126442806452369764520420510287876952322045891467}{347560401253037218737492947292030957861695808384} a^{7} - \frac{22790072154868755159855971395135982274325301407}{231706934168691479158328631528020638574463872256} a^{6} - \frac{1820843000024717349332148050910208589798177765}{43445050156629652342186618411503869732711976048} a^{5} - \frac{172757795616495762695224828696282638145257489689}{347560401253037218737492947292030957861695808384} a^{4} - \frac{305786884753918863428182568200061642162975586461}{695120802506074437474985894584061915723391616768} a^{3} + \frac{111570778830624427676623559074936153614077568721}{231706934168691479158328631528020638574463872256} a^{2} - \frac{19655975161022525420808295573206982938316587551}{77235644722897159719442877176006879524821290752} a - \frac{9291292036187648941363997427439756124226227085}{25745214907632386573147625725335626508273763584}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2287406525140 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $61$ | 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |