Normalized defining polynomial
\( x^{16} - x^{15} - 50 x^{14} + 50 x^{13} + 1021 x^{12} - 1021 x^{11} - 10913 x^{10} + 10913 x^{9} + 64822 x^{8} - 64822 x^{7} - 207824 x^{6} + 207824 x^{5} + 312682 x^{4} - 312682 x^{3} - 133466 x^{2} + 133466 x - 21929 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(613585802270249473903607633=11^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(187=11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{187}(1,·)$, $\chi_{187}(67,·)$, $\chi_{187}(65,·)$, $\chi_{187}(10,·)$, $\chi_{187}(142,·)$, $\chi_{187}(144,·)$, $\chi_{187}(131,·)$, $\chi_{187}(89,·)$, $\chi_{187}(100,·)$, $\chi_{187}(111,·)$, $\chi_{187}(155,·)$, $\chi_{187}(164,·)$, $\chi_{187}(166,·)$, $\chi_{187}(109,·)$, $\chi_{187}(175,·)$, $\chi_{187}(54,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{1801} a^{9} + \frac{461}{1801} a^{8} - \frac{27}{1801} a^{7} - \frac{258}{1801} a^{6} + \frac{243}{1801} a^{5} + \frac{134}{1801} a^{4} - \frac{810}{1801} a^{3} + \frac{759}{1801} a^{2} + \frac{729}{1801} a + \frac{841}{1801}$, $\frac{1}{1801} a^{10} - \frac{30}{1801} a^{8} - \frac{418}{1801} a^{7} + \frac{315}{1801} a^{6} - \frac{227}{1801} a^{5} + \frac{451}{1801} a^{4} - \frac{439}{1801} a^{3} + \frac{224}{1801} a^{2} - \frac{242}{1801} a - \frac{486}{1801}$, $\frac{1}{1801} a^{11} + \frac{805}{1801} a^{8} - \frac{495}{1801} a^{7} - \frac{763}{1801} a^{6} + \frac{537}{1801} a^{5} - \frac{21}{1801} a^{4} - \frac{663}{1801} a^{3} - \frac{885}{1801} a^{2} - \frac{228}{1801} a + \frac{16}{1801}$, $\frac{1}{1801} a^{12} - \frac{594}{1801} a^{8} - \frac{640}{1801} a^{7} - \frac{689}{1801} a^{6} + \frac{673}{1801} a^{5} - \frac{473}{1801} a^{4} - \frac{797}{1801} a^{3} - \frac{684}{1801} a^{2} + \frac{297}{1801} a + \frac{171}{1801}$, $\frac{1}{1801} a^{13} - \frac{558}{1801} a^{8} - \frac{518}{1801} a^{7} + \frac{506}{1801} a^{6} - \frac{211}{1801} a^{5} - \frac{445}{1801} a^{4} + \frac{844}{1801} a^{3} + \frac{893}{1801} a^{2} - \frac{844}{1801} a + \frac{677}{1801}$, $\frac{1}{1801} a^{14} - \frac{823}{1801} a^{8} - \frac{152}{1801} a^{7} - \frac{95}{1801} a^{6} + \frac{74}{1801} a^{5} - \frac{26}{1801} a^{4} - \frac{837}{1801} a^{3} - \frac{557}{1801} a^{2} + \frac{433}{1801} a - \frac{783}{1801}$, $\frac{1}{1801} a^{15} - \frac{760}{1801} a^{8} - \frac{704}{1801} a^{7} + \frac{258}{1801} a^{6} + \frac{52}{1801} a^{5} - \frac{416}{1801} a^{4} - \frac{817}{1801} a^{3} + \frac{143}{1801} a^{2} - \frac{549}{1801} a + \frac{559}{1801}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 124319056.419 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 17 | Data not computed | ||||||