Normalized defining polynomial
\( x^{16} - 33473 x^{14} + 456624845 x^{12} - 3278343720046 x^{10} + 13361907896488851 x^{8} - 31155934760944574792 x^{6} + 39890402242602894406078 x^{4} - 24953450052120111870485864 x^{2} + 5549872123325448369911507057 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61241780195042689588946649619585484552657695735808=2^{16}\cdot 17^{15}\cdot 67^{4}\cdot 63443^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1293.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 67, 63443$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4250681} a^{10} - \frac{33473}{4250681} a^{8} + \frac{1801978}{4250681} a^{6} - \frac{1748115}{4250681} a^{4} + \frac{13778}{4250681} a^{2}$, $\frac{1}{4250681} a^{11} - \frac{33473}{4250681} a^{9} + \frac{1801978}{4250681} a^{7} - \frac{1748115}{4250681} a^{5} + \frac{13778}{4250681} a^{3}$, $\frac{1}{18068288963761} a^{12} - \frac{33473}{18068288963761} a^{10} + \frac{456624845}{18068288963761} a^{8} - \frac{3278343720046}{18068288963761} a^{6} - \frac{8625936694289}{18068288963761} a^{4} - \frac{1685449}{4250681} a^{2}$, $\frac{1}{18068288963761} a^{13} - \frac{33473}{18068288963761} a^{11} + \frac{456624845}{18068288963761} a^{9} - \frac{3278343720046}{18068288963761} a^{7} - \frac{8625936694289}{18068288963761} a^{5} - \frac{1685449}{4250681} a^{3}$, $\frac{1}{104050097542623116564405343109943642383876124317951950656556497862184159} a^{14} - \frac{22802233764470181417224917371661128879714656206308540192}{1010195121773039966644712069028579052270641983669436414141325221962953} a^{12} + \frac{6131389448032500634820305050338989289137298816498454624074289595}{104050097542623116564405343109943642383876124317951950656556497862184159} a^{10} - \frac{46754766836114104211523629300935108305872240641538006735234795370588251}{104050097542623116564405343109943642383876124317951950656556497862184159} a^{8} + \frac{48846422284071546261378746290884919831642114210971343347652679239039794}{104050097542623116564405343109943642383876124317951950656556497862184159} a^{6} - \frac{12150856661432106243858268594324082552303586306630420247479992276}{24478453580172945597283198412194103105802605351460613171526279639} a^{4} + \frac{423995407588946710367885338013973972361331182064904810093}{5758713387377915585122289443078439220868986722706458840719} a^{2} + \frac{427129302437038734474866185788766908374114467108720}{1354774302606550711550052672284379660781175233499399}$, $\frac{1}{104050097542623116564405343109943642383876124317951950656556497862184159} a^{15} - \frac{22802233764470181417224917371661128879714656206308540192}{1010195121773039966644712069028579052270641983669436414141325221962953} a^{13} + \frac{6131389448032500634820305050338989289137298816498454624074289595}{104050097542623116564405343109943642383876124317951950656556497862184159} a^{11} - \frac{46754766836114104211523629300935108305872240641538006735234795370588251}{104050097542623116564405343109943642383876124317951950656556497862184159} a^{9} + \frac{48846422284071546261378746290884919831642114210971343347652679239039794}{104050097542623116564405343109943642383876124317951950656556497862184159} a^{7} - \frac{12150856661432106243858268594324082552303586306630420247479992276}{24478453580172945597283198412194103105802605351460613171526279639} a^{5} + \frac{423995407588946710367885338013973972361331182064904810093}{5758713387377915585122289443078439220868986722706458840719} a^{3} + \frac{427129302437038734474866185788766908374114467108720}{1354774302606550711550052672284379660781175233499399} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10922170490900000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ |
| 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ | |
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||
| 63443 | Data not computed | ||||||