Normalized defining polynomial
\( x^{16} - x^{15} - 234 x^{14} + 509 x^{13} + 18337 x^{12} - 57176 x^{11} - 592421 x^{10} + 2200433 x^{9} + 8770762 x^{8} - 37263645 x^{7} - 58997921 x^{6} + 293141240 x^{5} + 166860260 x^{4} - 1019696592 x^{3} - 220707968 x^{2} + 1184846848 x + 504881152 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6123007382888435990757129497254763904689=13^{14}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $306.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{368} a^{12} + \frac{1}{184} a^{11} - \frac{5}{184} a^{10} - \frac{37}{368} a^{9} + \frac{21}{184} a^{8} + \frac{1}{23} a^{7} + \frac{15}{368} a^{6} - \frac{37}{184} a^{5} + \frac{45}{184} a^{4} + \frac{53}{368} a^{3} - \frac{89}{184} a^{2} - \frac{8}{23} a - \frac{8}{23}$, $\frac{1}{736} a^{13} + \frac{1}{23} a^{11} + \frac{29}{736} a^{10} + \frac{35}{368} a^{9} + \frac{3}{92} a^{8} - \frac{17}{736} a^{7} + \frac{5}{46} a^{6} - \frac{11}{46} a^{5} - \frac{173}{736} a^{4} - \frac{27}{368} a^{3} - \frac{29}{92} a^{2} + \frac{4}{23} a + \frac{8}{23}$, $\frac{1}{29440} a^{14} + \frac{3}{5888} a^{13} - \frac{13}{14720} a^{12} - \frac{67}{29440} a^{11} - \frac{1583}{29440} a^{10} - \frac{3}{32} a^{9} - \frac{7}{256} a^{8} + \frac{5153}{29440} a^{7} + \frac{89}{2944} a^{6} - \frac{7261}{29440} a^{5} - \frac{2257}{29440} a^{4} + \frac{249}{736} a^{3} + \frac{1881}{7360} a^{2} + \frac{807}{1840} a - \frac{73}{230}$, $\frac{1}{2275287989285255765262296454746663385182248960} a^{15} - \frac{5905371745969680507632381624404916257577}{2275287989285255765262296454746663385182248960} a^{14} + \frac{323498473632388108715243149999158292934847}{1137643994642627882631148227373331692591124480} a^{13} - \frac{140197717818678018378457977422192543765079}{455057597857051153052459290949332677036449792} a^{12} - \frac{3162083001787988507626718288419413936939313}{98925564751532859359230280641159277616619520} a^{11} + \frac{2111185789522879697423207141465470648413099}{35551374832582121332223382105416615393472640} a^{10} + \frac{53675477171996107591473780456516582485591135}{455057597857051153052459290949332677036449792} a^{9} + \frac{158055230445539292447252181598284516436043833}{2275287989285255765262296454746663385182248960} a^{8} + \frac{61695683815360784805532901604244650774490097}{1137643994642627882631148227373331692591124480} a^{7} + \frac{19479913315433111599434516275634775597260179}{2275287989285255765262296454746663385182248960} a^{6} - \frac{77030828769360272516755334786677385715149445}{455057597857051153052459290949332677036449792} a^{5} + \frac{8495891876419901435944339804437427793933447}{71102749665164242664446764210833230786945280} a^{4} + \frac{283173693773875490257754339084579138721246521}{568821997321313941315574113686665846295562240} a^{3} + \frac{41299443116272964019283344536854169861687209}{142205499330328485328893528421666461573890560} a^{2} + \frac{1209340571632355507829376077903121870965677}{8887843708145530333055845526354153848368160} a + \frac{939661839462485726389901646132958020486107}{2221960927036382583263961381588538462092040}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222610131226000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.11647649.1, 8.8.940041681957275729.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | $16$ | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{16}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 41 | Data not computed | ||||||