Normalized defining polynomial
\( x^{16} - 6 x^{15} - 182 x^{14} + 1148 x^{13} + 12506 x^{12} - 84296 x^{11} - 394695 x^{10} + 2956884 x^{9} + 5316819 x^{8} - 49762742 x^{7} - 14339755 x^{6} + 343311742 x^{5} - 150618369 x^{4} - 583498754 x^{3} + 438205392 x^{2} + 18646992 x - 486704 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60283401692879138764114019775390625=5^{14}\cdot 61^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $149.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{3}{8} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{3}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3}$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{424} a^{14} - \frac{3}{106} a^{13} + \frac{11}{212} a^{12} + \frac{15}{424} a^{11} - \frac{25}{212} a^{10} + \frac{7}{106} a^{9} - \frac{41}{424} a^{8} + \frac{87}{424} a^{7} - \frac{43}{212} a^{6} + \frac{5}{53} a^{5} + \frac{19}{53} a^{4} + \frac{77}{424} a^{3} - \frac{31}{212} a^{2} + \frac{31}{106} a + \frac{12}{53}$, $\frac{1}{17666435497663689832534728542756212954655736835144} a^{15} - \frac{4553677219001487669248309788233349063564570083}{8833217748831844916267364271378106477327868417572} a^{14} - \frac{281833498976679430911136384475301353840886010947}{8833217748831844916267364271378106477327868417572} a^{13} - \frac{35365012162302691346548625924107716033529407079}{17666435497663689832534728542756212954655736835144} a^{12} + \frac{221034001521461099237233586288467480251919596095}{17666435497663689832534728542756212954655736835144} a^{11} + \frac{1506634846483929785710417323852715141007655175369}{17666435497663689832534728542756212954655736835144} a^{10} + \frac{51305609829282763937671749907220765145046622882}{2208304437207961229066841067844526619331967104393} a^{9} - \frac{1020032569973556822512941624316119154867546093235}{8833217748831844916267364271378106477327868417572} a^{8} + \frac{215202908477860996655895479340209856013203967179}{8833217748831844916267364271378106477327868417572} a^{7} + \frac{5206850440452076550997581707488684980536846726045}{17666435497663689832534728542756212954655736835144} a^{6} + \frac{562347074964933603329847714590516825291588384273}{17666435497663689832534728542756212954655736835144} a^{5} + \frac{7767361657502211355482222120761581015271848259793}{17666435497663689832534728542756212954655736835144} a^{4} + \frac{2274080438721085595752862330462694821021926932599}{17666435497663689832534728542756212954655736835144} a^{3} + \frac{4373373490329245194745048267465994115980690403801}{8833217748831844916267364271378106477327868417572} a^{2} + \frac{257472295756307079410077659224742893109612480933}{4416608874415922458133682135689053238663934208786} a + \frac{1067925386673945787003515488197214773477731989507}{2208304437207961229066841067844526619331967104393}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 796441295513 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{305}) \), \(\Q(\sqrt{5}) \), 4.4.28372625.1, 4.4.28372625.2, \(\Q(\sqrt{5}, \sqrt{61})\), 8.8.805005849390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $61$ | 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |