Normalized defining polynomial
\( x^{16} - 4 x^{15} - 51 x^{14} + 196 x^{13} + 906 x^{12} - 2982 x^{11} - 8509 x^{10} + 19533 x^{9} + 44732 x^{8} - 56263 x^{7} - 114529 x^{6} + 75917 x^{5} + 127991 x^{4} - 55591 x^{3} - 51826 x^{2} + 20159 x + 1021 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5508664624112838398681640625=5^{12}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2} - \frac{3}{10} a + \frac{1}{10}$, $\frac{1}{10} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{3} - \frac{3}{10} a^{2} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{6} + \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{11} - \frac{1}{2} a^{7} + \frac{1}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a$, $\frac{1}{40} a^{12} + \frac{1}{40} a^{11} - \frac{1}{40} a^{10} - \frac{1}{40} a^{9} - \frac{1}{20} a^{8} - \frac{1}{8} a^{7} - \frac{3}{20} a^{6} - \frac{3}{40} a^{5} + \frac{1}{20} a^{4} - \frac{13}{40} a^{3} - \frac{3}{40} a^{2} + \frac{1}{4} a + \frac{17}{40}$, $\frac{1}{40} a^{13} - \frac{1}{20} a^{11} - \frac{1}{40} a^{9} + \frac{1}{40} a^{8} - \frac{9}{40} a^{7} + \frac{3}{40} a^{6} - \frac{3}{40} a^{5} - \frac{19}{40} a^{4} + \frac{9}{20} a^{3} - \frac{7}{40} a^{2} - \frac{1}{8} a - \frac{13}{40}$, $\frac{1}{200} a^{14} - \frac{1}{200} a^{13} + \frac{1}{100} a^{12} + \frac{3}{100} a^{11} - \frac{9}{200} a^{10} + \frac{1}{100} a^{9} - \frac{1}{100} a^{8} + \frac{8}{25} a^{7} + \frac{31}{100} a^{6} + \frac{4}{25} a^{5} + \frac{89}{200} a^{4} + \frac{51}{200} a^{3} - \frac{1}{100} a^{2} + \frac{21}{50} a + \frac{9}{200}$, $\frac{1}{279924287790561984200} a^{15} - \frac{62594345781920997}{55984857558112396840} a^{14} + \frac{376965477749881323}{139962143895280992100} a^{13} + \frac{486340759376583063}{279924287790561984200} a^{12} - \frac{2693236422284161347}{69981071947640496050} a^{11} + \frac{2471981654325822713}{279924287790561984200} a^{10} + \frac{2510105884407092229}{55984857558112396840} a^{9} - \frac{1147794397011490949}{139962143895280992100} a^{8} - \frac{8045296667283801799}{279924287790561984200} a^{7} - \frac{42928193176119596253}{139962143895280992100} a^{6} + \frac{31660054628227056343}{139962143895280992100} a^{5} + \frac{1580218921256054233}{11196971511622479368} a^{4} - \frac{127427443041517543611}{279924287790561984200} a^{3} + \frac{38328480094676336057}{279924287790561984200} a^{2} + \frac{43220235448446791403}{279924287790561984200} a + \frac{48972482276296938169}{279924287790561984200}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 336719650.335 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |