Normalized defining polynomial
\( x^{16} - 6 x^{15} - 104 x^{14} + 686 x^{13} + 3788 x^{12} - 30236 x^{11} - 46611 x^{10} + 627708 x^{9} - 315387 x^{8} - 5761286 x^{7} + 10976306 x^{6} + 12473518 x^{5} - 56521182 x^{4} + 58093288 x^{3} - 17141511 x^{2} - 4048152 x + 1831516 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55005256933563283079156494140625=5^{14}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} - \frac{3}{16} a^{3} - \frac{7}{16} a^{2} + \frac{1}{4}$, $\frac{1}{32} a^{10} + \frac{1}{32} a^{8} + \frac{3}{16} a^{6} - \frac{3}{16} a^{5} + \frac{7}{32} a^{4} - \frac{5}{16} a^{3} - \frac{3}{32} a^{2} + \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{1}{64} a^{9} + \frac{7}{64} a^{8} - \frac{1}{32} a^{7} + \frac{1}{16} a^{6} + \frac{13}{64} a^{5} + \frac{15}{64} a^{4} - \frac{25}{64} a^{3} + \frac{3}{64} a^{2} - \frac{5}{16} a + \frac{1}{16}$, $\frac{1}{512} a^{12} - \frac{1}{128} a^{11} - \frac{3}{128} a^{9} - \frac{11}{512} a^{8} + \frac{21}{256} a^{7} + \frac{41}{512} a^{6} + \frac{1}{8} a^{5} - \frac{49}{256} a^{4} + \frac{99}{256} a^{3} - \frac{97}{512} a^{2} - \frac{1}{4} a + \frac{17}{128}$, $\frac{1}{13312} a^{13} + \frac{9}{13312} a^{12} - \frac{1}{3328} a^{11} + \frac{41}{3328} a^{10} + \frac{73}{13312} a^{9} - \frac{1013}{13312} a^{8} + \frac{1387}{13312} a^{7} - \frac{2347}{13312} a^{6} + \frac{519}{6656} a^{5} + \frac{783}{3328} a^{4} - \frac{1539}{13312} a^{3} + \frac{1091}{13312} a^{2} - \frac{639}{3328} a - \frac{915}{3328}$, $\frac{1}{3700736} a^{14} - \frac{11}{925184} a^{13} - \frac{209}{284672} a^{12} + \frac{697}{462592} a^{11} + \frac{393}{284672} a^{10} - \frac{35825}{1850368} a^{9} - \frac{14533}{462592} a^{8} - \frac{39541}{1850368} a^{7} + \frac{185177}{3700736} a^{6} - \frac{135141}{1850368} a^{5} - \frac{879831}{3700736} a^{4} + \frac{24845}{1850368} a^{3} + \frac{1127041}{3700736} a^{2} - \frac{7997}{115648} a - \frac{271149}{925184}$, $\frac{1}{340589995685466227269197824} a^{15} + \frac{25785667989057563257}{340589995685466227269197824} a^{14} + \frac{3479786451751542356175}{340589995685466227269197824} a^{13} - \frac{316126444863973555418145}{340589995685466227269197824} a^{12} - \frac{2217359450240506094602435}{340589995685466227269197824} a^{11} + \frac{2331616918073927875726247}{340589995685466227269197824} a^{10} - \frac{1355794714026416165313829}{170294997842733113634598912} a^{9} - \frac{5887657453248990156996397}{170294997842733113634598912} a^{8} + \frac{2598124793943908214150747}{26199230437343555943784448} a^{7} - \frac{7498843138335816745650885}{340589995685466227269197824} a^{6} - \frac{3478589403248815694759101}{26199230437343555943784448} a^{5} - \frac{39515817636986719305875865}{340589995685466227269197824} a^{4} + \frac{14914815513345576955761131}{340589995685466227269197824} a^{3} - \frac{43821181757908690646291427}{340589995685466227269197824} a^{2} - \frac{11332145574262318429484397}{85147498921366556817299456} a + \frac{571765247225421156690529}{1199260548188261363623936}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 325484310652 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), \(\Q(\sqrt{185}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{37})\), 4.4.6331625.2, 4.4.6331625.1, 8.8.40089475140625.1, 8.8.7416552901015625.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 37 | Data not computed | ||||||