Normalized defining polynomial
\( x^{16} - 3 x^{15} - 249 x^{14} + 1468 x^{13} + 14951 x^{12} - 127824 x^{11} - 146116 x^{10} + 3524299 x^{9} - 6618428 x^{8} - 25092711 x^{7} + 111980624 x^{6} - 122939949 x^{5} - 71984014 x^{4} + 233617078 x^{3} - 109771874 x^{2} - 52840783 x + 40491571 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(54377966460580450275755400738525390625=5^{14}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $228.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{5} + \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{6} + \frac{1}{5} a$, $\frac{1}{15} a^{12} - \frac{1}{15} a^{11} - \frac{1}{15} a^{10} - \frac{1}{15} a^{9} - \frac{1}{15} a^{8} + \frac{4}{15} a^{7} + \frac{7}{15} a^{6} + \frac{2}{15} a^{5} + \frac{2}{5} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{7}{15} a - \frac{1}{15}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{11} + \frac{1}{15} a^{10} + \frac{1}{15} a^{9} + \frac{1}{3} a^{7} + \frac{1}{5} a^{6} - \frac{7}{15} a^{5} + \frac{4}{15} a^{4} - \frac{4}{15} a^{3} + \frac{2}{5} a^{2} + \frac{7}{15} a - \frac{4}{15}$, $\frac{1}{1635} a^{14} + \frac{2}{327} a^{13} - \frac{5}{327} a^{12} + \frac{121}{1635} a^{11} + \frac{4}{1635} a^{10} + \frac{41}{545} a^{9} - \frac{152}{1635} a^{8} + \frac{253}{545} a^{7} + \frac{43}{109} a^{6} - \frac{532}{1635} a^{5} - \frac{74}{545} a^{4} + \frac{47}{545} a^{3} + \frac{389}{1635} a^{2} - \frac{661}{1635} a + \frac{133}{1635}$, $\frac{1}{261236987487992030198280695159045794111186305} a^{15} + \frac{22087419264295624135445885849402609769452}{261236987487992030198280695159045794111186305} a^{14} + \frac{1039307852952930647146600399034563930051826}{87078995829330676732760231719681931370395435} a^{13} + \frac{4006211087324096671968264801529177554847436}{261236987487992030198280695159045794111186305} a^{12} - \frac{5941671373268854164683085214892528197889317}{87078995829330676732760231719681931370395435} a^{11} - \frac{2654790616160829418190588660642169059190064}{261236987487992030198280695159045794111186305} a^{10} + \frac{19211103241354389688468919031586893209020649}{261236987487992030198280695159045794111186305} a^{9} - \frac{928434962376635664358096803555315594357935}{52247397497598406039656139031809158822237261} a^{8} + \frac{6111984390391135563190430098795349660037551}{261236987487992030198280695159045794111186305} a^{7} - \frac{10991190189158790916274457983758354773899068}{52247397497598406039656139031809158822237261} a^{6} + \frac{2793741270065420390538032303564401734912392}{87078995829330676732760231719681931370395435} a^{5} - \frac{6003488684257877991985038523932776011957817}{87078995829330676732760231719681931370395435} a^{4} - \frac{123158590282372844488566075376979933580321614}{261236987487992030198280695159045794111186305} a^{3} - \frac{9270834658936739265957063717490398573843666}{87078995829330676732760231719681931370395435} a^{2} + \frac{97959159891088258686708426115417747416385852}{261236987487992030198280695159045794111186305} a + \frac{261671342438709537347955970539812292699364}{1040784810709131594415460936888628661797555}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17978470399500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.9725425.1, 8.8.172615601860890625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 73 | Data not computed | ||||||