Normalized defining polynomial
\( x^{16} - 4 x^{15} - 20 x^{14} + 100 x^{13} + 44 x^{12} - 624 x^{11} + 362 x^{10} + 1370 x^{9} - 1453 x^{8} - 936 x^{7} + 1580 x^{6} - 82 x^{5} - 459 x^{4} + 86 x^{3} + 41 x^{2} - 6 x - 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5345972853145600000000=2^{24}\cdot 5^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6}$, $\frac{1}{102} a^{13} - \frac{1}{51} a^{12} - \frac{1}{51} a^{11} + \frac{4}{17} a^{10} + \frac{19}{102} a^{9} + \frac{49}{102} a^{8} + \frac{19}{102} a^{7} - \frac{1}{102} a^{6} - \frac{29}{102} a^{5} - \frac{35}{102} a^{4} + \frac{8}{51} a^{3} + \frac{43}{102} a^{2} + \frac{7}{102} a + \frac{37}{102}$, $\frac{1}{714} a^{14} + \frac{15}{238} a^{12} - \frac{19}{102} a^{11} - \frac{94}{357} a^{10} - \frac{45}{119} a^{9} + \frac{39}{238} a^{8} - \frac{58}{357} a^{7} - \frac{31}{714} a^{6} - \frac{24}{119} a^{5} + \frac{59}{119} a^{4} + \frac{4}{119} a^{3} - \frac{44}{119} a^{2} + \frac{1}{14} a - \frac{283}{714}$, $\frac{1}{110326566} a^{15} - \frac{36013}{110326566} a^{14} + \frac{88701}{18387761} a^{13} + \frac{3412639}{110326566} a^{12} - \frac{1391624}{55163283} a^{11} - \frac{44320859}{110326566} a^{10} + \frac{22571329}{110326566} a^{9} + \frac{17942725}{55163283} a^{8} - \frac{14563609}{110326566} a^{7} + \frac{13310173}{55163283} a^{6} - \frac{73573}{18387761} a^{5} - \frac{38103901}{110326566} a^{4} - \frac{916471}{2163266} a^{3} + \frac{326293}{6489798} a^{2} - \frac{2407957}{110326566} a - \frac{5324727}{36775522}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 316695.993468 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $Q_8 : C_2$ |
| Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |