Normalized defining polynomial
\( x^{16} - 4 x^{15} - 82 x^{14} + 428 x^{13} + 1666 x^{12} - 11264 x^{11} - 11158 x^{10} + 122968 x^{9} + 6103 x^{8} - 634260 x^{7} + 185526 x^{6} + 1445736 x^{5} - 609876 x^{4} - 880416 x^{3} + 770220 x^{2} - 217296 x + 21069 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53178385204239177923287842816=2^{32}\cdot 3^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13} a^{8} - \frac{2}{13} a^{7} - \frac{4}{13} a^{6} - \frac{2}{13} a^{5} + \frac{2}{13} a^{4} + \frac{6}{13} a^{3} + \frac{3}{13} a^{2} + \frac{2}{13} a + \frac{3}{13}$, $\frac{1}{13} a^{9} + \frac{5}{13} a^{7} + \frac{3}{13} a^{6} - \frac{2}{13} a^{5} - \frac{3}{13} a^{4} + \frac{2}{13} a^{3} - \frac{5}{13} a^{2} - \frac{6}{13} a + \frac{6}{13}$, $\frac{1}{13} a^{10} + \frac{5}{13} a^{6} - \frac{6}{13} a^{5} + \frac{5}{13} a^{4} + \frac{4}{13} a^{3} + \frac{5}{13} a^{2} - \frac{4}{13} a - \frac{2}{13}$, $\frac{1}{13} a^{11} + \frac{5}{13} a^{7} - \frac{6}{13} a^{6} + \frac{5}{13} a^{5} + \frac{4}{13} a^{4} + \frac{5}{13} a^{3} - \frac{4}{13} a^{2} - \frac{2}{13} a$, $\frac{1}{39} a^{12} - \frac{1}{39} a^{11} - \frac{1}{39} a^{10} - \frac{1}{39} a^{9} + \frac{1}{39} a^{8} - \frac{8}{39} a^{7} - \frac{7}{39} a^{6} - \frac{11}{39} a^{5} + \frac{4}{39} a^{4} + \frac{1}{13} a^{2} - \frac{3}{13} a - \frac{1}{13}$, $\frac{1}{39} a^{13} + \frac{1}{39} a^{11} + \frac{1}{39} a^{10} - \frac{1}{39} a^{8} - \frac{4}{13} a^{7} - \frac{2}{13} a^{6} + \frac{17}{39} a^{5} + \frac{4}{39} a^{4} - \frac{4}{13} a^{3} + \frac{5}{13} a^{2} - \frac{6}{13} a + \frac{3}{13}$, $\frac{1}{39} a^{14} - \frac{1}{39} a^{11} + \frac{1}{39} a^{10} - \frac{1}{39} a^{8} + \frac{2}{39} a^{7} - \frac{2}{13} a^{6} + \frac{5}{13} a^{5} - \frac{4}{39} a^{4} - \frac{2}{13} a^{3} - \frac{4}{13} a^{2} + \frac{3}{13} a$, $\frac{1}{2394500191678131254529123} a^{15} - \frac{249976637389082906527}{798166730559377084843041} a^{14} - \frac{28116999266087527049747}{2394500191678131254529123} a^{13} - \frac{26149279875525520011827}{2394500191678131254529123} a^{12} + \frac{6967335582174446137467}{798166730559377084843041} a^{11} + \frac{17050629720849940082}{14168640187444563636267} a^{10} - \frac{1179533176053939973016}{798166730559377084843041} a^{9} + \frac{7575613724057850834231}{798166730559377084843041} a^{8} - \frac{28753993398888424569979}{2394500191678131254529123} a^{7} - \frac{702722083674161069765564}{2394500191678131254529123} a^{6} - \frac{274913788725109613376553}{798166730559377084843041} a^{5} - \frac{314398800988398146185897}{798166730559377084843041} a^{4} - \frac{267203188037873543914294}{798166730559377084843041} a^{3} - \frac{379186859072385470846086}{798166730559377084843041} a^{2} + \frac{64897566238807244916893}{798166730559377084843041} a - \frac{220194726052327391849248}{798166730559377084843041}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 835254398.611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $Q_{16}$ |
| Character table for $Q_{16}$ |
Intermediate fields
| \(\Q(\sqrt{39}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{3}, \sqrt{13})\), 4.4.8112.1 x2, 4.4.7488.1 x2, 8.8.9475854336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |