Normalized defining polynomial
\( x^{16} - 1682 x^{14} + 875894 x^{12} - 186804404 x^{10} + 16802852192 x^{8} - 669027529184 x^{6} + 10976435368568 x^{4} - 64845664489472 x^{2} + 61960323334144 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49504953235652560005667952183459368974585759268864=2^{36}\cdot 7687^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1276.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7687$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{128} a^{13} + \frac{7}{64} a^{11} - \frac{5}{64} a^{9} + \frac{3}{32} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{16} a$, $\frac{1}{2141224439346601448653530740611545667468072224768} a^{14} + \frac{61845397791824905397835547172030196331010233783}{1070612219673300724326765370305772833734036112384} a^{12} - \frac{112369051245611817671356171319124406454357039173}{1070612219673300724326765370305772833734036112384} a^{10} + \frac{28491825280490798516434004074220354309524322387}{535306109836650362163382685152886416867018056192} a^{8} + \frac{8115350995885610880835752613350504421521579947}{66913263729581295270422835644110802108377257024} a^{6} + \frac{1325846526798449937327651559053307362321511}{8704730548924326170212415200222557838997952} a^{4} - \frac{2506372999819952010473638239364883822277511}{34818922195697304680849660800890231355991808} a^{2} - \frac{5691563543170699384501956378304851095804}{136011414826942596409568987503477466234343}$, $\frac{1}{34259591029545623178456491849784730679489155596288} a^{15} + \frac{61845397791824905397835547172030196331010233783}{17129795514772811589228245924892365339744577798144} a^{13} + \frac{1225896223346014087737100541563091635713188101307}{17129795514772811589228245924892365339744577798144} a^{11} + \frac{162318352739653389057279675362441958526278836435}{8564897757386405794614122962446182669872288899072} a^{9} + \frac{141941878455048201421681423901572108638276093995}{1070612219673300724326765370305772833734036112384} a^{7} - \frac{11731249296588039317990971241280529396175417}{139275688782789218723398643203560925423967232} a^{5} + \frac{32312549195877352670376022561525347533714297}{557102755131156874893594572814243701695868928} a^{3} - \frac{1422890885792674846125489094576212773951}{544045659307770385638275950013909864937372} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63359463347400000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 40 conjugacy class representatives for t16n1543 |
| Character table for t16n1543 is not computed |
Intermediate fields
| 4.4.59089969.4, 8.8.893855855723766016.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.9.5 | $x^{4} + 2 x^{2} - 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ |
| 2.12.27.285 | $x^{12} + 8 x^{10} - 8 x^{8} - 4 x^{6} - 12 x^{4} + 8 x^{2} - 8$ | $4$ | $3$ | $27$ | 12T51 | $[2, 2, 2, 3, 7/2]^{3}$ | |
| 7687 | Data not computed | ||||||