Normalized defining polynomial
\( x^{16} - x^{15} - 84 x^{14} + 84 x^{13} + 2891 x^{12} - 2891 x^{11} - 52359 x^{10} + 52359 x^{9} + 532016 x^{8} - 532016 x^{7} - 2974234 x^{6} + 2974234 x^{5} + 8182016 x^{4} - 8182016 x^{3} - 7755484 x^{2} + 7755484 x - 1114859 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48614142345328546750712906513=17^{15}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(323=17\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{323}(1,·)$, $\chi_{323}(134,·)$, $\chi_{323}(265,·)$, $\chi_{323}(75,·)$, $\chi_{323}(77,·)$, $\chi_{323}(284,·)$, $\chi_{323}(37,·)$, $\chi_{323}(227,·)$, $\chi_{323}(229,·)$, $\chi_{323}(113,·)$, $\chi_{323}(172,·)$, $\chi_{323}(303,·)$, $\chi_{323}(305,·)$, $\chi_{323}(115,·)$, $\chi_{323}(56,·)$, $\chi_{323}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{308549} a^{9} - \frac{61932}{308549} a^{8} - \frac{45}{308549} a^{7} + \frac{8888}{308549} a^{6} + \frac{675}{308549} a^{5} - \frac{111100}{308549} a^{4} - \frac{3750}{308549} a^{3} + \frac{135851}{308549} a^{2} + \frac{5625}{308549} a + \frac{30799}{308549}$, $\frac{1}{308549} a^{10} - \frac{50}{308549} a^{8} - \frac{1111}{308549} a^{7} + \frac{875}{308549} a^{6} + \frac{38885}{308549} a^{5} - \frac{6250}{308549} a^{4} - \frac{80301}{308549} a^{3} + \frac{15625}{308549} a^{2} + \frac{46478}{308549} a - \frac{6250}{308549}$, $\frac{1}{308549} a^{11} - \frac{12221}{308549} a^{8} - \frac{1375}{308549} a^{7} - \frac{133813}{308549} a^{6} + \frac{27500}{308549} a^{5} - \frac{81419}{308549} a^{4} + \frac{136674}{308549} a^{3} + \frac{50950}{308549} a^{2} - \frac{33549}{308549} a - \frac{2795}{308549}$, $\frac{1}{308549} a^{12} - \frac{1650}{308549} a^{8} - \frac{66660}{308549} a^{7} + \frac{38500}{308549} a^{6} + \frac{145482}{308549} a^{5} - \frac{826}{308549} a^{4} - \frac{112548}{308549} a^{3} - \frac{100647}{308549} a^{2} - \frac{66097}{308549} a - \frac{35201}{308549}$, $\frac{1}{308549} a^{13} - \frac{124741}{308549} a^{8} - \frac{35750}{308549} a^{7} + \frac{330}{308549} a^{6} - \frac{121272}{308549} a^{5} - \frac{149442}{308549} a^{4} - \frac{117167}{308549} a^{3} + \frac{81479}{308549} a^{2} - \frac{10421}{308549} a - \frac{92235}{308549}$, $\frac{1}{308549} a^{14} - \frac{45500}{308549} a^{8} - \frac{59133}{308549} a^{7} - \frac{39821}{308549} a^{6} + \frac{125405}{308549} a^{5} - \frac{55383}{308549} a^{4} + \frac{63013}{308549} a^{3} + \frac{50992}{308549} a^{2} - \frac{64536}{308549} a - \frac{154089}{308549}$, $\frac{1}{308549} a^{15} + \frac{12884}{308549} a^{8} + \frac{72522}{308549} a^{7} + \frac{21666}{308549} a^{6} + \frac{110766}{308549} a^{5} - \frac{28720}{308549} a^{4} + \frac{53589}{308549} a^{3} - \frac{6153}{308549} a^{2} - \frac{3710}{308549} a - \frac{75058}{308549}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1110998666.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | R | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $19$ | 19.8.4.2 | $x^{8} - 13718 x^{2} + 1303210$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 19.8.4.2 | $x^{8} - 13718 x^{2} + 1303210$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |