Normalized defining polynomial
\( x^{16} - x^{15} - 161 x^{14} + 89 x^{13} + 10289 x^{12} + 226 x^{11} - 336497 x^{10} - 234933 x^{9} + 5957206 x^{8} + 8516080 x^{7} - 52900437 x^{6} - 119238518 x^{5} + 154809239 x^{4} + 611877670 x^{3} + 359251250 x^{2} - 256164513 x - 219439429 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(477639401035264016929733847900390625=5^{12}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $169.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} + \frac{1}{11} a^{8} + \frac{3}{11} a^{7} + \frac{5}{11} a^{6} - \frac{1}{11} a^{4} - \frac{1}{11} a^{3} - \frac{3}{11} a^{2} - \frac{5}{11} a$, $\frac{1}{22} a^{10} - \frac{1}{22} a^{9} + \frac{1}{22} a^{8} + \frac{5}{11} a^{7} + \frac{1}{22} a^{6} - \frac{1}{22} a^{5} - \frac{5}{11} a^{4} + \frac{5}{11} a^{3} + \frac{1}{22} a^{2} + \frac{5}{11} a - \frac{1}{2}$, $\frac{1}{22} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{22} a - \frac{1}{2}$, $\frac{1}{2420} a^{12} - \frac{17}{1210} a^{11} - \frac{7}{2420} a^{10} - \frac{43}{1210} a^{9} - \frac{69}{605} a^{8} + \frac{163}{605} a^{7} + \frac{60}{121} a^{6} + \frac{41}{484} a^{5} + \frac{251}{2420} a^{4} + \frac{75}{484} a^{3} - \frac{95}{242} a^{2} - \frac{1}{220} a - \frac{9}{20}$, $\frac{1}{2420} a^{13} + \frac{47}{2420} a^{11} + \frac{3}{1210} a^{10} - \frac{1}{242} a^{9} + \frac{292}{605} a^{8} - \frac{141}{1210} a^{7} + \frac{171}{484} a^{6} + \frac{841}{2420} a^{5} - \frac{331}{2420} a^{4} + \frac{69}{242} a^{3} - \frac{191}{2420} a^{2} - \frac{3}{220} a - \frac{3}{10}$, $\frac{1}{2420} a^{14} - \frac{23}{1210} a^{11} - \frac{1}{220} a^{10} + \frac{2}{121} a^{9} + \frac{81}{242} a^{8} + \frac{21}{2420} a^{7} - \frac{1109}{2420} a^{6} - \frac{53}{110} a^{5} + \frac{113}{2420} a^{4} + \frac{57}{1210} a^{3} - \frac{923}{2420} a^{2} - \frac{89}{220} a + \frac{3}{20}$, $\frac{1}{308014338216871493551058711240316820} a^{15} + \frac{15246661575961666406480106907947}{77003584554217873387764677810079205} a^{14} - \frac{51478603822225182669928348858713}{308014338216871493551058711240316820} a^{13} - \frac{2745387322528627227888399270543}{154007169108435746775529355620158410} a^{12} + \frac{348943682715131099330792957509776}{15400716910843574677552935562015841} a^{11} + \frac{1043217556545084116782971045455946}{77003584554217873387764677810079205} a^{10} - \frac{312236079851433237773321612916765}{30801433821687149355105871124031682} a^{9} + \frac{14317078453078188944084887134797317}{308014338216871493551058711240316820} a^{8} + \frac{10125115889042528768650566197009739}{61602867643374298710211742248063364} a^{7} + \frac{153296795909003466232027473973690337}{308014338216871493551058711240316820} a^{6} + \frac{2073032714345453549056141312189888}{7000325868565261217069516164552655} a^{5} + \frac{139760363248708696337378900602122421}{308014338216871493551058711240316820} a^{4} - \frac{46820767419168730631176163639503531}{308014338216871493551058711240316820} a^{3} - \frac{7259269145672759356073622216793713}{15400716910843574677552935562015841} a^{2} + \frac{1070034903444726914345600500607293}{2800130347426104486827806465821062} a - \frac{530611260036539198209041958960189}{1272786521557320221285366575373210}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4290610616720 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{89}) \), \(\Q(\sqrt{445}) \), \(\Q(\sqrt{5}, \sqrt{89})\), 4.4.17624225.2, 4.4.704969.1, 8.8.310613306850625.1, 8.8.691114607742640625.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |