Normalized defining polynomial
\( x^{16} - x^{15} - 521 x^{14} - 352 x^{13} + 97262 x^{12} + 111457 x^{11} - 8578319 x^{10} - 7737475 x^{9} + 391096418 x^{8} + 106474606 x^{7} - 9220425289 x^{6} + 3780858515 x^{5} + 102878217925 x^{4} - 87419452512 x^{3} - 457661368284 x^{2} + 433370758320 x + 437343265328 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(462732306245995722656474121747020143758680081=29^{14}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $618.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{236} a^{13} - \frac{13}{118} a^{12} - \frac{7}{118} a^{11} + \frac{25}{118} a^{10} + \frac{23}{118} a^{9} - \frac{99}{236} a^{8} + \frac{13}{118} a^{7} - \frac{14}{59} a^{6} + \frac{29}{118} a^{5} + \frac{29}{59} a^{4} - \frac{51}{236} a^{3} + \frac{9}{118} a^{2} + \frac{17}{59} a + \frac{10}{59}$, $\frac{1}{65608} a^{14} - \frac{135}{65608} a^{13} + \frac{1109}{65608} a^{12} - \frac{4817}{32804} a^{11} + \frac{10455}{32804} a^{10} + \frac{29461}{65608} a^{9} - \frac{12901}{65608} a^{8} - \frac{12153}{65608} a^{7} + \frac{6821}{16402} a^{6} - \frac{7587}{32804} a^{5} - \frac{32165}{65608} a^{4} + \frac{23985}{65608} a^{3} + \frac{31323}{65608} a^{2} + \frac{16197}{32804} a + \frac{6875}{16402}$, $\frac{1}{321035756176800321337459069415982798473937207108038960888283649879421008} a^{15} - \frac{1158644171214648419675466290975699187954007284325791446679804897381}{321035756176800321337459069415982798473937207108038960888283649879421008} a^{14} + \frac{303754550184691814488120744005105730464551706084901105203036431427775}{321035756176800321337459069415982798473937207108038960888283649879421008} a^{13} - \frac{4072922036129412747748348592672165821048977068694752857566825193421427}{80258939044200080334364767353995699618484301777009740222070912469855252} a^{12} - \frac{31558603806258229750859464989420502702240631702357836820808995351461775}{160517878088400160668729534707991399236968603554019480444141824939710504} a^{11} - \frac{30948592906570676610186101270999404768131154622651171571927652212017303}{321035756176800321337459069415982798473937207108038960888283649879421008} a^{10} + \frac{82253407873718542161830055927151628084427914483729753542819803818574253}{321035756176800321337459069415982798473937207108038960888283649879421008} a^{9} + \frac{30861789342179779599528774045615254731335103033206979530059168854119093}{321035756176800321337459069415982798473937207108038960888283649879421008} a^{8} - \frac{37647327168511590353257372402839670282555682365560762658993833034365477}{160517878088400160668729534707991399236968603554019480444141824939710504} a^{7} + \frac{32620331139310392713501630099016848878443272748526294213603071702496145}{160517878088400160668729534707991399236968603554019480444141824939710504} a^{6} - \frac{43249850811297512642457549120298053521349851051632546515375263540426193}{321035756176800321337459069415982798473937207108038960888283649879421008} a^{5} + \frac{29113854011123939448783532533951335619716432855850426609209476541195303}{321035756176800321337459069415982798473937207108038960888283649879421008} a^{4} - \frac{132384494305102130014089595765244255971788289456627326984117563391754683}{321035756176800321337459069415982798473937207108038960888283649879421008} a^{3} - \frac{37309707977724838863602661744213478950854223584924055721068239263787285}{80258939044200080334364767353995699618484301777009740222070912469855252} a^{2} + \frac{3655808263463726653623206245515932377771774414467890254278452306437114}{20064734761050020083591191838498924904621075444252435055517728117463813} a + \frac{2562996301598481816209831867085095907555422439814516616982538910678367}{40129469522100040167182383676997849809242150888504870111035456234927626}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 90185580600800000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.57962561.1, 8.8.115844383968839978801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| 41 | Data not computed | ||||||