Normalized defining polynomial
\( x^{16} - 3 x^{15} - 536 x^{14} + 1240 x^{13} + 102277 x^{12} - 251544 x^{11} - 9100211 x^{10} + 25863349 x^{9} + 396034194 x^{8} - 1291290002 x^{7} - 7676264155 x^{6} + 27899474246 x^{5} + 46801723935 x^{4} - 185786927618 x^{3} - 58277636264 x^{2} + 285507154591 x + 61589352119 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45259126231720831581016789061101452813693889=13^{14}\cdot 101^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $535.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} + \frac{2}{17} a^{13} + \frac{8}{17} a^{12} + \frac{2}{17} a^{11} + \frac{3}{17} a^{10} - \frac{5}{17} a^{8} - \frac{7}{17} a^{5} - \frac{6}{17} a^{4} + \frac{4}{17} a^{3} + \frac{2}{17} a^{2} + \frac{3}{17} a - \frac{2}{17}$, $\frac{1}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{15} + \frac{9945481853522824614627992962822481762860810028201830464834230353734758245055623}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{14} + \frac{177080103354162562556942264036644611301644119138129791891186018370916991750012881}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{13} + \frac{48536344210040896202223401436731393297009104080587804754992998258836811443676823}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{12} - \frac{54810974581991208720958451880677997336676762776134512320092022119345267338634842}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{11} + \frac{102011800679009518884693568093250125094266351007724109610689554332724870491326604}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{10} + \frac{7278830388418417534537299606642975809920568625346533264998425036087797950727326}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{9} + \frac{9535586375421215596011927919046425216327243490769222856900339529882450967778233}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{8} + \frac{7266272546551819230725365495443313087598195752727076175547284687390908813718213}{26082145270273957818087558937541881667753266593124235695817526384961216316766337} a^{7} + \frac{4474062652520206060074456959335915018367433638565463696248850346343118039992696}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{6} - \frac{4385302647093813786254260097666949839878350345826365803551716337513667712725988}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{5} + \frac{149051080397098413388688575556480054333416516200689011791387211344743775323726052}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{4} - \frac{119949399769402748441178648750613989394511664331083242093590808234799518461687987}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{3} + \frac{84043970880074619499537905787467766195996160960387469335965759721033108043213047}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a^{2} - \frac{163359724734520466867553974694789362186998158474843350971671257582777422069527562}{443396469594657282907488501938211988351805532083112006828897948544340677385027729} a + \frac{186953092418745736695360379879692395517445751097192389870379805948218520388721547}{443396469594657282907488501938211988351805532083112006828897948544340677385027729}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15798021542300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{101}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{1313}) \), \(\Q(\sqrt{13}, \sqrt{101})\), 8.8.5123755016602262209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $101$ | 101.8.7.2 | $x^{8} - 404$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 101.8.7.2 | $x^{8} - 404$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |