Normalized defining polynomial
\( x^{16} - 2 x^{15} - 47 x^{14} + 84 x^{13} + 830 x^{12} - 1285 x^{11} - 6962 x^{10} + 8567 x^{9} + \cdots + 107 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[16, 0]$ |
| |
| Discriminant: |
\(4466413296812760910104974161\)
\(\medspace = 13^{12}\cdot 61^{8}\)
|
| |
| Root discriminant: | \(53.47\) |
| |
| Galois root discriminant: | $13^{3/4}61^{1/2}\approx 53.471507940612106$ | ||
| Ramified primes: |
\(13\), \(61\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $\SD_{16}$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{9}+\frac{1}{3}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{12}+\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{9}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{2703}a^{14}-\frac{20}{159}a^{13}+\frac{82}{901}a^{12}+\frac{253}{2703}a^{11}+\frac{365}{2703}a^{10}+\frac{440}{2703}a^{9}+\frac{1073}{2703}a^{8}+\frac{395}{901}a^{7}-\frac{148}{901}a^{6}-\frac{150}{901}a^{5}-\frac{1288}{2703}a^{4}-\frac{55}{2703}a^{3}+\frac{214}{901}a^{2}+\frac{124}{2703}a-\frac{31}{2703}$, $\frac{1}{51\cdots 41}a^{15}-\frac{27\cdots 96}{17\cdots 47}a^{14}-\frac{77\cdots 19}{51\cdots 41}a^{13}-\frac{68\cdots 33}{17\cdots 47}a^{12}+\frac{85\cdots 74}{51\cdots 41}a^{11}-\frac{24\cdots 59}{51\cdots 41}a^{10}-\frac{11\cdots 94}{51\cdots 41}a^{9}-\frac{21\cdots 59}{51\cdots 41}a^{8}+\frac{23\cdots 72}{51\cdots 41}a^{7}-\frac{25\cdots 87}{51\cdots 41}a^{6}-\frac{26\cdots 34}{17\cdots 47}a^{5}+\frac{23\cdots 03}{51\cdots 41}a^{4}-\frac{80\cdots 67}{51\cdots 41}a^{3}+\frac{85\cdots 61}{17\cdots 47}a^{2}+\frac{11\cdots 44}{51\cdots 41}a+\frac{23\cdots 98}{51\cdots 41}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH) |
|
Unit group
| Rank: | $15$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{10\cdots 63}{65\cdots 79}a^{15}-\frac{21\cdots 80}{65\cdots 79}a^{14}-\frac{15\cdots 60}{21\cdots 93}a^{13}+\frac{91\cdots 15}{65\cdots 79}a^{12}+\frac{81\cdots 55}{65\cdots 79}a^{11}-\frac{14\cdots 84}{65\cdots 79}a^{10}-\frac{65\cdots 10}{65\cdots 79}a^{9}+\frac{32\cdots 87}{21\cdots 93}a^{8}+\frac{84\cdots 07}{21\cdots 93}a^{7}-\frac{29\cdots 96}{65\cdots 79}a^{6}-\frac{44\cdots 09}{65\cdots 79}a^{5}+\frac{31\cdots 17}{65\cdots 79}a^{4}+\frac{29\cdots 40}{65\cdots 79}a^{3}-\frac{12\cdots 82}{65\cdots 79}a^{2}-\frac{20\cdots 56}{21\cdots 93}a+\frac{10\cdots 73}{65\cdots 79}$, $\frac{29\cdots 51}{51\cdots 41}a^{15}-\frac{73\cdots 08}{51\cdots 41}a^{14}-\frac{45\cdots 59}{17\cdots 47}a^{13}+\frac{31\cdots 22}{51\cdots 41}a^{12}+\frac{23\cdots 45}{51\cdots 41}a^{11}-\frac{48\cdots 08}{51\cdots 41}a^{10}-\frac{18\cdots 15}{51\cdots 41}a^{9}+\frac{11\cdots 17}{17\cdots 47}a^{8}+\frac{25\cdots 12}{17\cdots 47}a^{7}-\frac{99\cdots 66}{51\cdots 41}a^{6}-\frac{13\cdots 56}{51\cdots 41}a^{5}+\frac{96\cdots 38}{51\cdots 41}a^{4}+\frac{90\cdots 08}{51\cdots 41}a^{3}-\frac{19\cdots 65}{51\cdots 41}a^{2}-\frac{55\cdots 09}{17\cdots 47}a-\frac{10\cdots 62}{51\cdots 41}$, $\frac{44\cdots 41}{51\cdots 41}a^{15}-\frac{11\cdots 97}{51\cdots 41}a^{14}-\frac{20\cdots 84}{51\cdots 41}a^{13}+\frac{16\cdots 43}{17\cdots 47}a^{12}+\frac{33\cdots 96}{51\cdots 41}a^{11}-\frac{79\cdots 91}{51\cdots 41}a^{10}-\frac{26\cdots 84}{51\cdots 41}a^{9}+\frac{56\cdots 66}{51\cdots 41}a^{8}+\frac{95\cdots 60}{51\cdots 41}a^{7}-\frac{17\cdots 83}{51\cdots 41}a^{6}-\frac{15\cdots 07}{51\cdots 41}a^{5}+\frac{63\cdots 13}{17\cdots 47}a^{4}+\frac{51\cdots 70}{30\cdots 73}a^{3}-\frac{20\cdots 10}{17\cdots 47}a^{2}-\frac{49\cdots 09}{17\cdots 47}a+\frac{35\cdots 18}{51\cdots 41}$, $\frac{29\cdots 51}{51\cdots 41}a^{15}-\frac{73\cdots 08}{51\cdots 41}a^{14}-\frac{45\cdots 59}{17\cdots 47}a^{13}+\frac{31\cdots 22}{51\cdots 41}a^{12}+\frac{23\cdots 45}{51\cdots 41}a^{11}-\frac{48\cdots 08}{51\cdots 41}a^{10}-\frac{18\cdots 15}{51\cdots 41}a^{9}+\frac{11\cdots 17}{17\cdots 47}a^{8}+\frac{25\cdots 12}{17\cdots 47}a^{7}-\frac{99\cdots 66}{51\cdots 41}a^{6}-\frac{13\cdots 56}{51\cdots 41}a^{5}+\frac{96\cdots 38}{51\cdots 41}a^{4}+\frac{90\cdots 08}{51\cdots 41}a^{3}-\frac{19\cdots 65}{51\cdots 41}a^{2}-\frac{54\cdots 62}{17\cdots 47}a-\frac{10\cdots 62}{51\cdots 41}$, $\frac{14\cdots 82}{51\cdots 41}a^{15}-\frac{36\cdots 32}{51\cdots 41}a^{14}-\frac{67\cdots 58}{51\cdots 41}a^{13}+\frac{15\cdots 18}{51\cdots 41}a^{12}+\frac{37\cdots 36}{17\cdots 47}a^{11}-\frac{81\cdots 69}{17\cdots 47}a^{10}-\frac{30\cdots 21}{17\cdots 47}a^{9}+\frac{16\cdots 05}{51\cdots 41}a^{8}+\frac{34\cdots 17}{51\cdots 41}a^{7}-\frac{16\cdots 01}{17\cdots 47}a^{6}-\frac{58\cdots 75}{51\cdots 41}a^{5}+\frac{53\cdots 89}{51\cdots 41}a^{4}+\frac{12\cdots 10}{17\cdots 47}a^{3}-\frac{14\cdots 32}{51\cdots 41}a^{2}-\frac{21\cdots 61}{17\cdots 47}a+\frac{26\cdots 97}{51\cdots 41}$, $\frac{58\cdots 48}{51\cdots 41}a^{15}-\frac{19\cdots 60}{51\cdots 41}a^{14}-\frac{24\cdots 47}{51\cdots 41}a^{13}+\frac{28\cdots 56}{17\cdots 47}a^{12}+\frac{37\cdots 41}{51\cdots 41}a^{11}-\frac{13\cdots 78}{51\cdots 41}a^{10}-\frac{79\cdots 79}{17\cdots 47}a^{9}+\frac{10\cdots 94}{51\cdots 41}a^{8}+\frac{18\cdots 75}{17\cdots 47}a^{7}-\frac{11\cdots 64}{17\cdots 47}a^{6}+\frac{74\cdots 88}{51\cdots 41}a^{5}+\frac{49\cdots 79}{51\cdots 41}a^{4}-\frac{78\cdots 98}{51\cdots 41}a^{3}-\frac{25\cdots 72}{51\cdots 41}a^{2}+\frac{16\cdots 20}{51\cdots 41}a+\frac{32\cdots 58}{51\cdots 41}$, $\frac{85\cdots 17}{65\cdots 79}a^{15}-\frac{71\cdots 87}{21\cdots 93}a^{14}-\frac{13\cdots 38}{21\cdots 93}a^{13}+\frac{91\cdots 27}{65\cdots 79}a^{12}+\frac{66\cdots 98}{65\cdots 79}a^{11}-\frac{47\cdots 10}{21\cdots 93}a^{10}-\frac{52\cdots 98}{65\cdots 79}a^{9}+\frac{32\cdots 68}{21\cdots 93}a^{8}+\frac{66\cdots 72}{21\cdots 93}a^{7}-\frac{29\cdots 53}{65\cdots 79}a^{6}-\frac{11\cdots 08}{21\cdots 93}a^{5}+\frac{30\cdots 58}{65\cdots 79}a^{4}+\frac{20\cdots 17}{65\cdots 79}a^{3}-\frac{25\cdots 58}{21\cdots 93}a^{2}-\frac{34\cdots 71}{65\cdots 79}a+\frac{18\cdots 98}{65\cdots 79}$, $\frac{10\cdots 63}{65\cdots 79}a^{15}-\frac{21\cdots 80}{65\cdots 79}a^{14}-\frac{15\cdots 60}{21\cdots 93}a^{13}+\frac{91\cdots 15}{65\cdots 79}a^{12}+\frac{81\cdots 55}{65\cdots 79}a^{11}-\frac{14\cdots 84}{65\cdots 79}a^{10}-\frac{65\cdots 10}{65\cdots 79}a^{9}+\frac{32\cdots 87}{21\cdots 93}a^{8}+\frac{84\cdots 07}{21\cdots 93}a^{7}-\frac{29\cdots 96}{65\cdots 79}a^{6}-\frac{44\cdots 09}{65\cdots 79}a^{5}+\frac{31\cdots 17}{65\cdots 79}a^{4}+\frac{29\cdots 40}{65\cdots 79}a^{3}-\frac{12\cdots 82}{65\cdots 79}a^{2}-\frac{20\cdots 56}{21\cdots 93}a+\frac{17\cdots 52}{65\cdots 79}$, $\frac{29\cdots 51}{51\cdots 41}a^{15}-\frac{73\cdots 08}{51\cdots 41}a^{14}-\frac{45\cdots 59}{17\cdots 47}a^{13}+\frac{31\cdots 22}{51\cdots 41}a^{12}+\frac{23\cdots 45}{51\cdots 41}a^{11}-\frac{48\cdots 08}{51\cdots 41}a^{10}-\frac{18\cdots 15}{51\cdots 41}a^{9}+\frac{11\cdots 17}{17\cdots 47}a^{8}+\frac{25\cdots 12}{17\cdots 47}a^{7}-\frac{99\cdots 66}{51\cdots 41}a^{6}-\frac{13\cdots 56}{51\cdots 41}a^{5}+\frac{96\cdots 38}{51\cdots 41}a^{4}+\frac{90\cdots 08}{51\cdots 41}a^{3}-\frac{19\cdots 65}{51\cdots 41}a^{2}-\frac{55\cdots 09}{17\cdots 47}a-\frac{53\cdots 21}{51\cdots 41}$, $\frac{33\cdots 43}{51\cdots 41}a^{15}-\frac{24\cdots 76}{51\cdots 41}a^{14}-\frac{16\cdots 39}{51\cdots 41}a^{13}+\frac{78\cdots 50}{51\cdots 41}a^{12}+\frac{30\cdots 20}{51\cdots 41}a^{11}-\frac{60\cdots 31}{51\cdots 41}a^{10}-\frac{91\cdots 72}{17\cdots 47}a^{9}-\frac{35\cdots 69}{51\cdots 41}a^{8}+\frac{39\cdots 10}{17\cdots 47}a^{7}+\frac{19\cdots 68}{17\cdots 47}a^{6}-\frac{21\cdots 83}{51\cdots 41}a^{5}-\frac{64\cdots 01}{17\cdots 47}a^{4}+\frac{25\cdots 46}{51\cdots 41}a^{3}+\frac{11\cdots 26}{51\cdots 41}a^{2}+\frac{31\cdots 78}{17\cdots 47}a+\frac{23\cdots 57}{51\cdots 41}$, $\frac{10\cdots 33}{17\cdots 47}a^{15}-\frac{44\cdots 03}{51\cdots 41}a^{14}-\frac{14\cdots 54}{51\cdots 41}a^{13}+\frac{18\cdots 97}{51\cdots 41}a^{12}+\frac{25\cdots 04}{51\cdots 41}a^{11}-\frac{27\cdots 83}{51\cdots 41}a^{10}-\frac{20\cdots 67}{51\cdots 41}a^{9}+\frac{59\cdots 98}{17\cdots 47}a^{8}+\frac{81\cdots 34}{51\cdots 41}a^{7}-\frac{46\cdots 14}{51\cdots 41}a^{6}-\frac{49\cdots 27}{17\cdots 47}a^{5}+\frac{26\cdots 20}{51\cdots 41}a^{4}+\frac{92\cdots 47}{51\cdots 41}a^{3}+\frac{77\cdots 20}{51\cdots 41}a^{2}-\frac{93\cdots 68}{51\cdots 41}a+\frac{28\cdots 43}{17\cdots 47}$, $\frac{82\cdots 42}{17\cdots 47}a^{15}-\frac{28\cdots 15}{51\cdots 41}a^{14}-\frac{11\cdots 86}{51\cdots 41}a^{13}+\frac{22\cdots 96}{10\cdots 91}a^{12}+\frac{19\cdots 64}{51\cdots 41}a^{11}-\frac{10\cdots 62}{30\cdots 73}a^{10}-\frac{54\cdots 61}{17\cdots 47}a^{9}+\frac{11\cdots 16}{51\cdots 41}a^{8}+\frac{66\cdots 02}{51\cdots 41}a^{7}-\frac{18\cdots 53}{30\cdots 73}a^{6}-\frac{12\cdots 03}{51\cdots 41}a^{5}+\frac{74\cdots 70}{17\cdots 47}a^{4}+\frac{32\cdots 10}{17\cdots 47}a^{3}+\frac{69\cdots 81}{51\cdots 41}a^{2}-\frac{40\cdots 50}{10\cdots 91}a-\frac{42\cdots 37}{51\cdots 41}$, $\frac{21\cdots 58}{51\cdots 41}a^{15}-\frac{56\cdots 61}{51\cdots 41}a^{14}-\frac{32\cdots 97}{17\cdots 47}a^{13}+\frac{24\cdots 63}{51\cdots 41}a^{12}+\frac{16\cdots 32}{51\cdots 41}a^{11}-\frac{12\cdots 32}{17\cdots 47}a^{10}-\frac{41\cdots 49}{17\cdots 47}a^{9}+\frac{26\cdots 32}{51\cdots 41}a^{8}+\frac{15\cdots 37}{17\cdots 47}a^{7}-\frac{25\cdots 35}{17\cdots 47}a^{6}-\frac{25\cdots 79}{17\cdots 47}a^{5}+\frac{75\cdots 89}{51\cdots 41}a^{4}+\frac{46\cdots 95}{51\cdots 41}a^{3}-\frac{19\cdots 41}{51\cdots 41}a^{2}-\frac{77\cdots 76}{51\cdots 41}a+\frac{70\cdots 13}{51\cdots 41}$, $\frac{21\cdots 18}{17\cdots 47}a^{15}-\frac{20\cdots 35}{17\cdots 47}a^{14}-\frac{28\cdots 97}{51\cdots 41}a^{13}+\frac{24\cdots 45}{51\cdots 41}a^{12}+\frac{46\cdots 88}{51\cdots 41}a^{11}-\frac{36\cdots 45}{51\cdots 41}a^{10}-\frac{33\cdots 80}{51\cdots 41}a^{9}+\frac{23\cdots 45}{51\cdots 41}a^{8}+\frac{35\cdots 32}{17\cdots 47}a^{7}-\frac{58\cdots 77}{51\cdots 41}a^{6}-\frac{12\cdots 55}{51\cdots 41}a^{5}+\frac{11\cdots 94}{17\cdots 47}a^{4}+\frac{17\cdots 84}{57\cdots 41}a^{3}-\frac{41\cdots 40}{51\cdots 41}a^{2}+\frac{41\cdots 18}{51\cdots 41}a+\frac{97\cdots 05}{51\cdots 41}$, $\frac{91\cdots 24}{51\cdots 41}a^{15}-\frac{21\cdots 14}{51\cdots 41}a^{14}-\frac{42\cdots 82}{51\cdots 41}a^{13}+\frac{90\cdots 50}{51\cdots 41}a^{12}+\frac{24\cdots 58}{17\cdots 47}a^{11}-\frac{46\cdots 63}{17\cdots 47}a^{10}-\frac{58\cdots 28}{51\cdots 41}a^{9}+\frac{96\cdots 43}{51\cdots 41}a^{8}+\frac{23\cdots 74}{51\cdots 41}a^{7}-\frac{28\cdots 99}{51\cdots 41}a^{6}-\frac{13\cdots 10}{17\cdots 47}a^{5}+\frac{28\cdots 51}{51\cdots 41}a^{4}+\frac{28\cdots 57}{51\cdots 41}a^{3}-\frac{61\cdots 76}{51\cdots 41}a^{2}-\frac{53\cdots 36}{51\cdots 41}a-\frac{41\cdots 58}{17\cdots 47}$
|
| |
| Regulator: | \( 410433815.678 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{16}\cdot(2\pi)^{0}\cdot 410433815.678 \cdot 1}{2\cdot\sqrt{4466413296812760910104974161}}\cr\approx \mathstrut & 0.201239679143 \end{aligned}\] (assuming GRH)
Galois group
$\SD_{16}$ (as 16T12):
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{793}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{13}, \sqrt{61})\), 4.4.10309.1 x2, 4.4.48373.1 x2, 8.8.395451064801.1, 8.8.1095593933629.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{8}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(13\)
| 13.1.4.3a1.1 | $x^{4} + 13$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
| 13.1.4.3a1.1 | $x^{4} + 13$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 13.1.4.3a1.1 | $x^{4} + 13$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 13.1.4.3a1.1 | $x^{4} + 13$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
|
\(61\)
| 61.2.2.2a1.2 | $x^{4} + 120 x^{3} + 3604 x^{2} + 240 x + 65$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 61.2.2.2a1.2 | $x^{4} + 120 x^{3} + 3604 x^{2} + 240 x + 65$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 61.2.2.2a1.2 | $x^{4} + 120 x^{3} + 3604 x^{2} + 240 x + 65$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 61.2.2.2a1.2 | $x^{4} + 120 x^{3} + 3604 x^{2} + 240 x + 65$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |