Normalized defining polynomial
\( x^{16} - 2288 x^{14} + 1816476 x^{12} - 641999728 x^{10} + 101963947458 x^{8} - 6294328954624 x^{6} + 168134672246112 x^{4} - 1833276172408064 x^{2} + 5543020491743296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44272035895977179125717718174809351883063296=2^{62}\cdot 127^{4}\cdot 577^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $534.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 127, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{508} a^{10} - \frac{1}{254} a^{8} - \frac{33}{127} a^{6} + \frac{1}{127} a^{4} + \frac{1}{254} a^{2}$, $\frac{1}{508} a^{11} - \frac{1}{254} a^{9} - \frac{33}{127} a^{7} + \frac{1}{127} a^{5} + \frac{1}{254} a^{3}$, $\frac{1}{2193544} a^{12} + \frac{63}{548386} a^{10} - \frac{63279}{548386} a^{8} - \frac{17843}{274193} a^{6} + \frac{80773}{1096772} a^{4} - \frac{752}{2159} a^{2} - \frac{4}{17}$, $\frac{1}{4387088} a^{13} + \frac{63}{1096772} a^{11} - \frac{63279}{1096772} a^{9} + \frac{128175}{274193} a^{7} - \frac{1015999}{2193544} a^{5} + \frac{1407}{4318} a^{3} - \frac{2}{17} a$, $\frac{1}{4024960351781489090678232084406495242360780151568} a^{14} - \frac{50910872408695453469775876465693853289365}{1006240087945372272669558021101623810590195037892} a^{12} - \frac{173251175644568114405646848362787642852190267}{251560021986343068167389505275405952647548759473} a^{10} + \frac{51305757449075060826851479164064642484829099200}{251560021986343068167389505275405952647548759473} a^{8} - \frac{146200105648337477329654389491563421723890923015}{2012480175890744545339116042203247621180390075784} a^{6} - \frac{862896279610917643409556739473503705302316621}{3961575149391229419958889846856786655866909598} a^{4} - \frac{12728089938427151049271009421318148561493715}{31193505113316767086290471235092808313912674} a^{2} - \frac{43333782620231067188725629704736647420}{212840685007415269629023807878742943503}$, $\frac{1}{8049920703562978181356464168812990484721560303136} a^{15} - \frac{50910872408695453469775876465693853289365}{2012480175890744545339116042203247621180390075784} a^{13} + \frac{1287782872117342252356857529977242756524693731}{2012480175890744545339116042203247621180390075784} a^{11} - \frac{37732323665722140305916497967676265251456003968}{251560021986343068167389505275405952647548759473} a^{9} - \frac{669128025367979760764227849276659260298322989951}{4024960351781489090678232084406495242360780151568} a^{7} - \frac{831702774497600876323266268238410896988403947}{7923150298782458839917779693713573311733819196} a^{5} - \frac{3151320215794468109673765671043028470773121}{15596752556658383543145235617546404156956337} a^{3} - \frac{21666891310115533594362814852368323710}{212840685007415269629023807878742943503} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65536993578800000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:Q_8.C_2^3$ (as 16T520):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_4:Q_8.C_2^3$ |
| Character table for $C_4:Q_8.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.1396405436416.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.33 | $x^{8} + 12 x^{4} + 34$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $[2, 3, 7/2, 4, 5]$ |
| 2.8.31.33 | $x^{8} + 12 x^{4} + 34$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $[2, 3, 7/2, 4, 5]$ | |
| 127 | Data not computed | ||||||
| 577 | Data not computed | ||||||