Normalized defining polynomial
\( x^{16} - 2 x^{15} - 78 x^{14} + 159 x^{13} + 2362 x^{12} - 5016 x^{11} - 34929 x^{10} + 79762 x^{9} + 256088 x^{8} - 659347 x^{7} - 785803 x^{6} + 2560624 x^{5} + 268374 x^{4} - 3315295 x^{3} + 864770 x^{2} + 891400 x - 317375 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(440166027395300672133281640625=5^{8}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{8} + \frac{1}{5} a^{4}$, $\frac{1}{65} a^{13} + \frac{6}{65} a^{12} - \frac{1}{13} a^{11} - \frac{27}{65} a^{9} + \frac{1}{5} a^{8} - \frac{2}{13} a^{7} - \frac{5}{13} a^{6} + \frac{6}{65} a^{5} - \frac{19}{65} a^{4} + \frac{2}{13} a^{3} + \frac{4}{13} a^{2} - \frac{3}{13} a - \frac{1}{13}$, $\frac{1}{325} a^{14} + \frac{2}{325} a^{13} + \frac{2}{65} a^{12} - \frac{6}{325} a^{11} - \frac{27}{325} a^{10} + \frac{121}{325} a^{9} + \frac{24}{65} a^{8} + \frac{2}{325} a^{7} - \frac{24}{325} a^{6} - \frac{108}{325} a^{5} - \frac{1}{65} a^{4} + \frac{149}{325} a^{3} - \frac{19}{65} a^{2} + \frac{24}{65} a + \frac{6}{13}$, $\frac{1}{3985156594548265063937838677875} a^{15} + \frac{4073295958163310430549638747}{3985156594548265063937838677875} a^{14} + \frac{5341711510803964905444978998}{797031318909653012787567735575} a^{13} - \frac{332454283702744276974949484601}{3985156594548265063937838677875} a^{12} - \frac{359760770401671210490114426937}{3985156594548265063937838677875} a^{11} + \frac{330282723577436894715783392181}{3985156594548265063937838677875} a^{10} + \frac{2131438443885707842305150447}{797031318909653012787567735575} a^{9} + \frac{542366131733591579219333407817}{3985156594548265063937838677875} a^{8} + \frac{596255847141360225678314987421}{3985156594548265063937838677875} a^{7} + \frac{1841141010679184896576253230562}{3985156594548265063937838677875} a^{6} - \frac{8774949524586112074134029129}{31881252756386120511502709423} a^{5} + \frac{1832060098324133675701024506454}{3985156594548265063937838677875} a^{4} + \frac{175475930094431533986154733809}{797031318909653012787567735575} a^{3} - \frac{150647909706662548363721198301}{797031318909653012787567735575} a^{2} + \frac{2997711180885305325507749038}{159406263781930602557513547115} a + \frac{10294198917331760117818254519}{31881252756386120511502709423}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18951197490.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{505}) \), \(\Q(\sqrt{101}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{101})\), 4.4.51005.1 x2, 4.4.2525.1 x2, 8.8.65037750625.1, 8.8.132690018825125.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $101$ | 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |