Normalized defining polynomial
\( x^{16} - 636 x^{14} + 156618 x^{12} - 19276476 x^{10} + 1283010849 x^{8} - 46430899784 x^{6} + 875091198288 x^{4} - 7985667216384 x^{2} + 27809211433088 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4292702462281032366933505959381142863872=2^{53}\cdot 383^{2}\cdot 1217^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $299.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 383, 1217$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{7} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{9} + \frac{5}{16} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{3179519712308451965831420022903424973024} a^{14} - \frac{4676151664934996398388288511853013307}{794879928077112991457855005725856243256} a^{12} + \frac{159825351383136507351815119122192134065}{1589759856154225982915710011451712486512} a^{10} + \frac{10732739863565593432012676323492463657}{794879928077112991457855005725856243256} a^{8} - \frac{1}{4} a^{7} + \frac{410744359406572828494557458372432196281}{3179519712308451965831420022903424973024} a^{6} + \frac{178069019869966018910451737767226026405}{397439964038556495728927502862928121628} a^{4} - \frac{1}{4} a^{3} + \frac{97638831955035180581331014134129525439}{198719982019278247864463751431464060814} a^{2} + \frac{65259847387735100298246406671962}{213168088737745137815309820441337}$, $\frac{1}{6359039424616903931662840045806849946048} a^{15} - \frac{4676151664934996398388288511853013307}{1589759856154225982915710011451712486512} a^{13} - \frac{237614612655419988377112383740735987563}{3179519712308451965831420022903424973024} a^{11} + \frac{10732739863565593432012676323492463657}{1589759856154225982915710011451712486512} a^{9} - \frac{384135568670540162963297547353424046975}{6359039424616903931662840045806849946048} a^{7} - \frac{219370944168590476818475765095702095223}{794879928077112991457855005725856243256} a^{5} - \frac{101081150064243067283132737297334535375}{397439964038556495728927502862928121628} a^{3} + \frac{32629923693867550149123203335981}{213168088737745137815309820441337} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3169929188480000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 49 conjugacy class representatives for t16n1113 |
| Character table for t16n1113 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.77888.1, 8.8.776517189632.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.25.1 | $x^{8} + 8 x^{7} + 2 x^{4} + 4 x^{2} + 16 x + 2$ | $8$ | $1$ | $25$ | $C_2^3: C_4$ | $[2, 3, 7/2, 4, 17/4]$ |
| 2.8.28.4 | $x^{8} + 8 x^{5} + 16 x^{2} + 14$ | $8$ | $1$ | $28$ | $C_2^3: C_4$ | $[2, 3, 7/2, 4, 17/4]$ | |
| 383 | Data not computed | ||||||
| 1217 | Data not computed | ||||||