Normalized defining polynomial
\( x^{16} - 86 x^{14} - 60 x^{13} + 2863 x^{12} + 3552 x^{11} - 46258 x^{10} - 76548 x^{9} + 375204 x^{8} + 749840 x^{7} - 1418582 x^{6} - 3434480 x^{5} + 1688476 x^{4} + 6320648 x^{3} + 1288520 x^{2} - 1743672 x + 214631 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(428196565723310037401600000000=2^{32}\cdot 5^{8}\cdot 761^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2642953} a^{14} - \frac{1318125}{2642953} a^{13} + \frac{399060}{2642953} a^{12} + \frac{22270}{114911} a^{11} + \frac{954370}{2642953} a^{10} + \frac{520402}{2642953} a^{9} - \frac{667498}{2642953} a^{8} - \frac{884145}{2642953} a^{7} - \frac{1066568}{2642953} a^{6} + \frac{1190042}{2642953} a^{5} + \frac{870740}{2642953} a^{4} + \frac{43411}{114911} a^{3} + \frac{387838}{2642953} a^{2} - \frac{1174762}{2642953} a - \frac{401750}{2642953}$, $\frac{1}{113084623095490191159314040894483} a^{15} + \frac{682689729039214423640402}{113084623095490191159314040894483} a^{14} - \frac{4461902395807874345654414277473}{10280420281408199196301276444953} a^{13} - \frac{12497884309800376478088862105610}{113084623095490191159314040894483} a^{12} + \frac{14381264129748730270520403036005}{37694874365163397053104680298161} a^{11} + \frac{247063335808220550504621031456}{1638907581094060741439333926007} a^{10} + \frac{34125532137878695227225562770617}{113084623095490191159314040894483} a^{9} + \frac{4768972197269735942269278640016}{10280420281408199196301276444953} a^{8} + \frac{6698961894828523504389200264087}{113084623095490191159314040894483} a^{7} + \frac{14438482831073325494698436418370}{37694874365163397053104680298161} a^{6} + \frac{53758503976680855142805790383035}{113084623095490191159314040894483} a^{5} + \frac{10944268608850850705221682954018}{37694874365163397053104680298161} a^{4} - \frac{16498605800767394042339473749848}{113084623095490191159314040894483} a^{3} + \frac{7637306919086326348665346220005}{113084623095490191159314040894483} a^{2} + \frac{4430435126944529912151332690234}{10280420281408199196301276444953} a + \frac{9151843191103678321955902605428}{113084623095490191159314040894483}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4161585918.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 52 conjugacy class representatives for t16n1163 are not computed |
| Character table for t16n1163 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 761 | Data not computed | ||||||