Properties

Label 16.16.4281965657...0000.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{32}\cdot 5^{8}\cdot 761^{5}$
Root discriminant $71.12$
Ramified primes $2, 5, 761$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1163

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1957201, 4432032, -561946, -5331440, 3185748, 1803360, -1718422, -201616, 389733, -816, -45990, 1336, 2930, -56, -92, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 92*x^14 - 56*x^13 + 2930*x^12 + 1336*x^11 - 45990*x^10 - 816*x^9 + 389733*x^8 - 201616*x^7 - 1718422*x^6 + 1803360*x^5 + 3185748*x^4 - 5331440*x^3 - 561946*x^2 + 4432032*x - 1957201)
 
gp: K = bnfinit(x^16 - 92*x^14 - 56*x^13 + 2930*x^12 + 1336*x^11 - 45990*x^10 - 816*x^9 + 389733*x^8 - 201616*x^7 - 1718422*x^6 + 1803360*x^5 + 3185748*x^4 - 5331440*x^3 - 561946*x^2 + 4432032*x - 1957201, 1)
 

Normalized defining polynomial

\( x^{16} - 92 x^{14} - 56 x^{13} + 2930 x^{12} + 1336 x^{11} - 45990 x^{10} - 816 x^{9} + 389733 x^{8} - 201616 x^{7} - 1718422 x^{6} + 1803360 x^{5} + 3185748 x^{4} - 5331440 x^{3} - 561946 x^{2} + 4432032 x - 1957201 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(428196565723310037401600000000=2^{32}\cdot 5^{8}\cdot 761^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $71.12$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 761$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{22975473688926680610217118427738} a^{15} - \frac{23057617496352908973379468}{8211391597186090282422129531} a^{14} + \frac{457458477850464990222099149393}{22975473688926680610217118427738} a^{13} - \frac{144331222769118755374311956987}{7658491229642226870072372809246} a^{12} - \frac{1579227747771463869202986863444}{11487736844463340305108559213869} a^{11} - \frac{233729466019138964395684685425}{3829245614821113435036186404623} a^{10} - \frac{12054682644315064512255214033}{178104447200982020234241228122} a^{9} + \frac{591592510317872580419039799837}{7658491229642226870072372809246} a^{8} + \frac{1573416501627240033107102846565}{3829245614821113435036186404623} a^{7} - \frac{3780265076728050451360983539672}{11487736844463340305108559213869} a^{6} - \frac{6076288145472443983974116300003}{22975473688926680610217118427738} a^{5} - \frac{3852576376940848430389624253309}{22975473688926680610217118427738} a^{4} - \frac{271825780511382113635363566877}{998933638648986113487700801206} a^{3} - \frac{5016748382255853934000209409541}{11487736844463340305108559213869} a^{2} + \frac{3197015553122683687312639294637}{11487736844463340305108559213869} a - \frac{1752614590545728996721628312}{8211391597186090282422129531}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4159157904.22 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1163:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 52 conjugacy class representatives for t16n1163 are not computed
Character table for t16n1163 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
761Data not computed